kernel/str.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! String representations.
4
5use crate::{
6 alloc::{flags::*, AllocError, KVec},
7 error::{to_result, Result},
8 fmt::{self, Write},
9 prelude::*,
10};
11use core::{
12 marker::PhantomData,
13 ops::{Deref, DerefMut, Index},
14};
15
16pub use crate::prelude::CStr;
17
18/// Byte string without UTF-8 validity guarantee.
19#[repr(transparent)]
20pub struct BStr([u8]);
21
22impl BStr {
23 /// Returns the length of this string.
24 #[inline]
25 pub const fn len(&self) -> usize {
26 self.0.len()
27 }
28
29 /// Returns `true` if the string is empty.
30 #[inline]
31 pub const fn is_empty(&self) -> bool {
32 self.len() == 0
33 }
34
35 /// Creates a [`BStr`] from a `[u8]`.
36 #[inline]
37 pub const fn from_bytes(bytes: &[u8]) -> &Self {
38 // SAFETY: `BStr` is transparent to `[u8]`.
39 unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
40 }
41
42 /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
43 ///
44 /// # Examples
45 ///
46 /// ```
47 /// # use kernel::b_str;
48 /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
49 /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
50 /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
51 /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
52 /// ```
53 pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
54 self.deref()
55 .strip_prefix(pattern.as_ref().deref())
56 .map(Self::from_bytes)
57 }
58}
59
60impl fmt::Display for BStr {
61 /// Formats printable ASCII characters, escaping the rest.
62 ///
63 /// ```
64 /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
65 /// let ascii = b_str!("Hello, BStr!");
66 /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
67 /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
68 ///
69 /// let non_ascii = b_str!("🦀");
70 /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
71 /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
72 /// # Ok::<(), kernel::error::Error>(())
73 /// ```
74 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
75 for &b in &self.0 {
76 match b {
77 // Common escape codes.
78 b'\t' => f.write_str("\\t")?,
79 b'\n' => f.write_str("\\n")?,
80 b'\r' => f.write_str("\\r")?,
81 // Printable characters.
82 0x20..=0x7e => f.write_char(b as char)?,
83 _ => write!(f, "\\x{b:02x}")?,
84 }
85 }
86 Ok(())
87 }
88}
89
90impl fmt::Debug for BStr {
91 /// Formats printable ASCII characters with a double quote on either end,
92 /// escaping the rest.
93 ///
94 /// ```
95 /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
96 /// // Embedded double quotes are escaped.
97 /// let ascii = b_str!("Hello, \"BStr\"!");
98 /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
99 /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
100 ///
101 /// let non_ascii = b_str!("😺");
102 /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
103 /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
104 /// # Ok::<(), kernel::error::Error>(())
105 /// ```
106 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
107 f.write_char('"')?;
108 for &b in &self.0 {
109 match b {
110 // Common escape codes.
111 b'\t' => f.write_str("\\t")?,
112 b'\n' => f.write_str("\\n")?,
113 b'\r' => f.write_str("\\r")?,
114 // String escape characters.
115 b'\"' => f.write_str("\\\"")?,
116 b'\\' => f.write_str("\\\\")?,
117 // Printable characters.
118 0x20..=0x7e => f.write_char(b as char)?,
119 _ => write!(f, "\\x{b:02x}")?,
120 }
121 }
122 f.write_char('"')
123 }
124}
125
126impl Deref for BStr {
127 type Target = [u8];
128
129 #[inline]
130 fn deref(&self) -> &Self::Target {
131 &self.0
132 }
133}
134
135impl PartialEq for BStr {
136 fn eq(&self, other: &Self) -> bool {
137 self.deref().eq(other.deref())
138 }
139}
140
141impl<Idx> Index<Idx> for BStr
142where
143 [u8]: Index<Idx, Output = [u8]>,
144{
145 type Output = Self;
146
147 fn index(&self, index: Idx) -> &Self::Output {
148 BStr::from_bytes(&self.0[index])
149 }
150}
151
152impl AsRef<BStr> for [u8] {
153 fn as_ref(&self) -> &BStr {
154 BStr::from_bytes(self)
155 }
156}
157
158impl AsRef<BStr> for BStr {
159 fn as_ref(&self) -> &BStr {
160 self
161 }
162}
163
164/// Creates a new [`BStr`] from a string literal.
165///
166/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
167/// characters can be included.
168///
169/// # Examples
170///
171/// ```
172/// # use kernel::b_str;
173/// # use kernel::str::BStr;
174/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
175/// ```
176#[macro_export]
177macro_rules! b_str {
178 ($str:literal) => {{
179 const S: &'static str = $str;
180 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
181 C
182 }};
183}
184
185/// Returns a C pointer to the string.
186// It is a free function rather than a method on an extension trait because:
187//
188// - error[E0379]: functions in trait impls cannot be declared const
189#[inline]
190pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
191 c_str.as_ptr().cast()
192}
193
194mod private {
195 pub trait Sealed {}
196
197 impl Sealed for super::CStr {}
198}
199
200/// Extensions to [`CStr`].
201pub trait CStrExt: private::Sealed {
202 /// Wraps a raw C string pointer.
203 ///
204 /// # Safety
205 ///
206 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
207 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
208 /// must not be mutated.
209 // This function exists to paper over the fact that `CStr::from_ptr` takes a `*const
210 // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
211 unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self;
212
213 /// Creates a mutable [`CStr`] from a `[u8]` without performing any
214 /// additional checks.
215 ///
216 /// # Safety
217 ///
218 /// `bytes` *must* end with a `NUL` byte, and should only have a single
219 /// `NUL` byte (or the string will be truncated).
220 unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self;
221
222 /// Returns a C pointer to the string.
223 // This function exists to paper over the fact that `CStr::as_ptr` returns a `*const
224 // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
225 fn as_char_ptr(&self) -> *const c_char;
226
227 /// Convert this [`CStr`] into a [`CString`] by allocating memory and
228 /// copying over the string data.
229 fn to_cstring(&self) -> Result<CString, AllocError>;
230
231 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
232 ///
233 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
234 /// but non-ASCII letters are unchanged.
235 ///
236 /// To return a new lowercased value without modifying the existing one, use
237 /// [`to_ascii_lowercase()`].
238 ///
239 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
240 fn make_ascii_lowercase(&mut self);
241
242 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
243 ///
244 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
245 /// but non-ASCII letters are unchanged.
246 ///
247 /// To return a new uppercased value without modifying the existing one, use
248 /// [`to_ascii_uppercase()`].
249 ///
250 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
251 fn make_ascii_uppercase(&mut self);
252
253 /// Returns a copy of this [`CString`] where each character is mapped to its
254 /// ASCII lower case equivalent.
255 ///
256 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
257 /// but non-ASCII letters are unchanged.
258 ///
259 /// To lowercase the value in-place, use [`make_ascii_lowercase`].
260 ///
261 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
262 fn to_ascii_lowercase(&self) -> Result<CString, AllocError>;
263
264 /// Returns a copy of this [`CString`] where each character is mapped to its
265 /// ASCII upper case equivalent.
266 ///
267 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
268 /// but non-ASCII letters are unchanged.
269 ///
270 /// To uppercase the value in-place, use [`make_ascii_uppercase`].
271 ///
272 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
273 fn to_ascii_uppercase(&self) -> Result<CString, AllocError>;
274}
275
276impl fmt::Display for CStr {
277 /// Formats printable ASCII characters, escaping the rest.
278 ///
279 /// ```
280 /// # use kernel::c_str;
281 /// # use kernel::prelude::fmt;
282 /// # use kernel::str::CStr;
283 /// # use kernel::str::CString;
284 /// let penguin = c_str!("🐧");
285 /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
286 /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
287 ///
288 /// let ascii = c_str!("so \"cool\"");
289 /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
290 /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
291 /// # Ok::<(), kernel::error::Error>(())
292 /// ```
293 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
294 for &c in self.to_bytes() {
295 if (0x20..0x7f).contains(&c) {
296 // Printable character.
297 f.write_char(c as char)?;
298 } else {
299 write!(f, "\\x{c:02x}")?;
300 }
301 }
302 Ok(())
303 }
304}
305
306/// Converts a mutable C string to a mutable byte slice.
307///
308/// # Safety
309///
310/// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before
311/// the borrow ends and the underlying [`CStr`] is used.
312unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] {
313 // SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]`
314 // (this is technically not guaranteed, but we rely on it here). The pointer dereference is
315 // safe since it comes from a mutable reference which is guaranteed to be valid for writes.
316 unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) }
317}
318
319impl CStrExt for CStr {
320 #[inline]
321 unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
322 // SAFETY: The safety preconditions are the same as for `CStr::from_ptr`.
323 unsafe { CStr::from_ptr(ptr.cast()) }
324 }
325
326 #[inline]
327 unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self {
328 // SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are
329 // guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is
330 // technically not guaranteed, but we rely on it here). The pointer dereference is safe
331 // since it comes from a mutable reference which is guaranteed to be valid for writes.
332 unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
333 }
334
335 #[inline]
336 fn as_char_ptr(&self) -> *const c_char {
337 self.as_ptr().cast()
338 }
339
340 fn to_cstring(&self) -> Result<CString, AllocError> {
341 CString::try_from(self)
342 }
343
344 fn make_ascii_lowercase(&mut self) {
345 // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
346 unsafe { to_bytes_mut(self) }.make_ascii_lowercase();
347 }
348
349 fn make_ascii_uppercase(&mut self) {
350 // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
351 unsafe { to_bytes_mut(self) }.make_ascii_uppercase();
352 }
353
354 fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
355 let mut s = self.to_cstring()?;
356
357 s.make_ascii_lowercase();
358
359 Ok(s)
360 }
361
362 fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
363 let mut s = self.to_cstring()?;
364
365 s.make_ascii_uppercase();
366
367 Ok(s)
368 }
369}
370
371impl AsRef<BStr> for CStr {
372 #[inline]
373 fn as_ref(&self) -> &BStr {
374 BStr::from_bytes(self.to_bytes())
375 }
376}
377
378/// Creates a new [`CStr`] from a string literal.
379///
380/// The string literal should not contain any `NUL` bytes.
381///
382/// # Examples
383///
384/// ```
385/// # use kernel::c_str;
386/// # use kernel::str::CStr;
387/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
388/// ```
389#[macro_export]
390macro_rules! c_str {
391 ($str:expr) => {{
392 const S: &str = concat!($str, "\0");
393 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
394 Ok(v) => v,
395 Err(_) => panic!("string contains interior NUL"),
396 };
397 C
398 }};
399}
400
401#[kunit_tests(rust_kernel_str)]
402mod tests {
403 use super::*;
404
405 impl From<core::ffi::FromBytesWithNulError> for Error {
406 #[inline]
407 fn from(_: core::ffi::FromBytesWithNulError) -> Error {
408 EINVAL
409 }
410 }
411
412 macro_rules! format {
413 ($($f:tt)*) => ({
414 CString::try_from_fmt(fmt!($($f)*))?.to_str()?
415 })
416 }
417
418 const ALL_ASCII_CHARS: &str =
419 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
420 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
421 !\"#$%&'()*+,-./0123456789:;<=>?@\
422 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
423 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
424 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
425 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
426 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
427 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
428 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
429 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
430 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
431
432 #[test]
433 fn test_cstr_to_str() -> Result {
434 let cstr = c"\xf0\x9f\xa6\x80";
435 let checked_str = cstr.to_str()?;
436 assert_eq!(checked_str, "🦀");
437 Ok(())
438 }
439
440 #[test]
441 fn test_cstr_to_str_invalid_utf8() -> Result {
442 let cstr = c"\xc3\x28";
443 assert!(cstr.to_str().is_err());
444 Ok(())
445 }
446
447 #[test]
448 fn test_cstr_display() -> Result {
449 let hello_world = c"hello, world!";
450 assert_eq!(format!("{hello_world}"), "hello, world!");
451 let non_printables = c"\x01\x09\x0a";
452 assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
453 let non_ascii = c"d\xe9j\xe0 vu";
454 assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
455 let good_bytes = c"\xf0\x9f\xa6\x80";
456 assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
457 Ok(())
458 }
459
460 #[test]
461 fn test_cstr_display_all_bytes() -> Result {
462 let mut bytes: [u8; 256] = [0; 256];
463 // fill `bytes` with [1..=255] + [0]
464 for i in u8::MIN..=u8::MAX {
465 bytes[i as usize] = i.wrapping_add(1);
466 }
467 let cstr = CStr::from_bytes_with_nul(&bytes)?;
468 assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
469 Ok(())
470 }
471
472 #[test]
473 fn test_cstr_debug() -> Result {
474 let hello_world = c"hello, world!";
475 assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
476 let non_printables = c"\x01\x09\x0a";
477 assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\"");
478 let non_ascii = c"d\xe9j\xe0 vu";
479 assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
480 let good_bytes = c"\xf0\x9f\xa6\x80";
481 assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
482 Ok(())
483 }
484
485 #[test]
486 fn test_bstr_display() -> Result {
487 let hello_world = BStr::from_bytes(b"hello, world!");
488 assert_eq!(format!("{hello_world}"), "hello, world!");
489 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
490 assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
491 let others = BStr::from_bytes(b"\x01");
492 assert_eq!(format!("{others}"), "\\x01");
493 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
494 assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
495 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
496 assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
497 Ok(())
498 }
499
500 #[test]
501 fn test_bstr_debug() -> Result {
502 let hello_world = BStr::from_bytes(b"hello, world!");
503 assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
504 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
505 assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
506 let others = BStr::from_bytes(b"\x01");
507 assert_eq!(format!("{others:?}"), "\"\\x01\"");
508 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
509 assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
510 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
511 assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
512 Ok(())
513 }
514}
515
516/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
517///
518/// It does not fail if callers write past the end of the buffer so that they can calculate the
519/// size required to fit everything.
520///
521/// # Invariants
522///
523/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
524/// is less than `end`.
525pub struct RawFormatter {
526 // Use `usize` to use `saturating_*` functions.
527 beg: usize,
528 pos: usize,
529 end: usize,
530}
531
532impl RawFormatter {
533 /// Creates a new instance of [`RawFormatter`] with an empty buffer.
534 fn new() -> Self {
535 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
536 Self {
537 beg: 0,
538 pos: 0,
539 end: 0,
540 }
541 }
542
543 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
544 ///
545 /// # Safety
546 ///
547 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
548 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
549 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
550 // INVARIANT: The safety requirements guarantee the type invariants.
551 Self {
552 beg: pos as usize,
553 pos: pos as usize,
554 end: end as usize,
555 }
556 }
557
558 /// Creates a new instance of [`RawFormatter`] with the given buffer.
559 ///
560 /// # Safety
561 ///
562 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
563 /// for the lifetime of the returned [`RawFormatter`].
564 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
565 let pos = buf as usize;
566 // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
567 // guarantees that the memory region is valid for writes.
568 Self {
569 pos,
570 beg: pos,
571 end: pos.saturating_add(len),
572 }
573 }
574
575 /// Returns the current insert position.
576 ///
577 /// N.B. It may point to invalid memory.
578 pub(crate) fn pos(&self) -> *mut u8 {
579 self.pos as *mut u8
580 }
581
582 /// Returns the number of bytes written to the formatter.
583 pub fn bytes_written(&self) -> usize {
584 self.pos - self.beg
585 }
586}
587
588impl fmt::Write for RawFormatter {
589 fn write_str(&mut self, s: &str) -> fmt::Result {
590 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
591 // don't want it to wrap around to 0.
592 let pos_new = self.pos.saturating_add(s.len());
593
594 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
595 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
596
597 if len_to_copy > 0 {
598 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
599 // yet, so it is valid for write per the type invariants.
600 unsafe {
601 core::ptr::copy_nonoverlapping(
602 s.as_bytes().as_ptr(),
603 self.pos as *mut u8,
604 len_to_copy,
605 )
606 };
607 }
608
609 self.pos = pos_new;
610 Ok(())
611 }
612}
613
614/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
615///
616/// Fails if callers attempt to write more than will fit in the buffer.
617pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
618
619impl Formatter<'_> {
620 /// Creates a new instance of [`Formatter`] with the given buffer.
621 ///
622 /// # Safety
623 ///
624 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
625 /// for the lifetime of the returned [`Formatter`].
626 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
627 // SAFETY: The safety requirements of this function satisfy those of the callee.
628 Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
629 }
630
631 /// Create a new [`Self`] instance.
632 pub fn new(buffer: &mut [u8]) -> Self {
633 // SAFETY: `buffer` is valid for writes for the entire length for
634 // the lifetime of `Self`.
635 unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
636 }
637}
638
639impl Deref for Formatter<'_> {
640 type Target = RawFormatter;
641
642 fn deref(&self) -> &Self::Target {
643 &self.0
644 }
645}
646
647impl fmt::Write for Formatter<'_> {
648 fn write_str(&mut self, s: &str) -> fmt::Result {
649 self.0.write_str(s)?;
650
651 // Fail the request if we go past the end of the buffer.
652 if self.0.pos > self.0.end {
653 Err(fmt::Error)
654 } else {
655 Ok(())
656 }
657 }
658}
659
660/// A mutable reference to a byte buffer where a string can be written into.
661///
662/// The buffer will be automatically null terminated after the last written character.
663///
664/// # Invariants
665///
666/// * The first byte of `buffer` is always zero.
667/// * The length of `buffer` is at least 1.
668pub(crate) struct NullTerminatedFormatter<'a> {
669 buffer: &'a mut [u8],
670}
671
672impl<'a> NullTerminatedFormatter<'a> {
673 /// Create a new [`Self`] instance.
674 pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
675 *(buffer.first_mut()?) = 0;
676
677 // INVARIANT:
678 // - We wrote zero to the first byte above.
679 // - If buffer was not at least length 1, `buffer.first_mut()` would return None.
680 Some(Self { buffer })
681 }
682}
683
684impl Write for NullTerminatedFormatter<'_> {
685 fn write_str(&mut self, s: &str) -> fmt::Result {
686 let bytes = s.as_bytes();
687 let len = bytes.len();
688
689 // We want space for a zero. By type invariant, buffer length is always at least 1, so no
690 // underflow.
691 if len > self.buffer.len() - 1 {
692 return Err(fmt::Error);
693 }
694
695 let buffer = core::mem::take(&mut self.buffer);
696 // We break the zero start invariant for a short while.
697 buffer[..len].copy_from_slice(bytes);
698 // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
699 self.buffer = &mut buffer[len..];
700
701 // INVARIANT: We write zero to the first byte of the buffer.
702 self.buffer[0] = 0;
703
704 Ok(())
705 }
706}
707
708/// # Safety
709///
710/// - `string` must point to a null terminated string that is valid for read.
711unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
712 let mut result: bool = false;
713
714 // SAFETY:
715 // - By function safety requirement, `string` is a valid null-terminated string.
716 // - `result` is a valid `bool` that we own.
717 to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
718 Ok(result)
719}
720
721/// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
722///
723/// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
724/// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
725///
726/// # Examples
727///
728/// ```
729/// # use kernel::{c_str, str::kstrtobool};
730///
731/// // Lowercase
732/// assert_eq!(kstrtobool(c_str!("true")), Ok(true));
733/// assert_eq!(kstrtobool(c_str!("tr")), Ok(true));
734/// assert_eq!(kstrtobool(c_str!("t")), Ok(true));
735/// assert_eq!(kstrtobool(c_str!("twrong")), Ok(true));
736/// assert_eq!(kstrtobool(c_str!("false")), Ok(false));
737/// assert_eq!(kstrtobool(c_str!("f")), Ok(false));
738/// assert_eq!(kstrtobool(c_str!("yes")), Ok(true));
739/// assert_eq!(kstrtobool(c_str!("no")), Ok(false));
740/// assert_eq!(kstrtobool(c_str!("on")), Ok(true));
741/// assert_eq!(kstrtobool(c_str!("off")), Ok(false));
742///
743/// // Camel case
744/// assert_eq!(kstrtobool(c_str!("True")), Ok(true));
745/// assert_eq!(kstrtobool(c_str!("False")), Ok(false));
746/// assert_eq!(kstrtobool(c_str!("Yes")), Ok(true));
747/// assert_eq!(kstrtobool(c_str!("No")), Ok(false));
748/// assert_eq!(kstrtobool(c_str!("On")), Ok(true));
749/// assert_eq!(kstrtobool(c_str!("Off")), Ok(false));
750///
751/// // All caps
752/// assert_eq!(kstrtobool(c_str!("TRUE")), Ok(true));
753/// assert_eq!(kstrtobool(c_str!("FALSE")), Ok(false));
754/// assert_eq!(kstrtobool(c_str!("YES")), Ok(true));
755/// assert_eq!(kstrtobool(c_str!("NO")), Ok(false));
756/// assert_eq!(kstrtobool(c_str!("ON")), Ok(true));
757/// assert_eq!(kstrtobool(c_str!("OFF")), Ok(false));
758///
759/// // Numeric
760/// assert_eq!(kstrtobool(c_str!("1")), Ok(true));
761/// assert_eq!(kstrtobool(c_str!("0")), Ok(false));
762///
763/// // Invalid input
764/// assert_eq!(kstrtobool(c_str!("invalid")), Err(EINVAL));
765/// assert_eq!(kstrtobool(c_str!("2")), Err(EINVAL));
766/// ```
767pub fn kstrtobool(string: &CStr) -> Result<bool> {
768 // SAFETY:
769 // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
770 // null terminated.
771 // - `string` is live and thus the string is valid for read.
772 unsafe { kstrtobool_raw(string.as_char_ptr()) }
773}
774
775/// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
776///
777/// Only considers at most the first two bytes of `bytes`.
778pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
779 // `ktostrbool` only considers the first two bytes of the input.
780 let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
781 // SAFETY: `stack_string` is null terminated and it is live on the stack so
782 // it is valid for read.
783 unsafe { kstrtobool_raw(stack_string.as_ptr()) }
784}
785
786/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
787///
788/// Used for interoperability with kernel APIs that take C strings.
789///
790/// # Invariants
791///
792/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
793///
794/// # Examples
795///
796/// ```
797/// use kernel::{str::CString, prelude::fmt};
798///
799/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
800/// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
801///
802/// let tmp = "testing";
803/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
804/// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
805///
806/// // This fails because it has an embedded `NUL` byte.
807/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
808/// assert_eq!(s.is_ok(), false);
809/// # Ok::<(), kernel::error::Error>(())
810/// ```
811pub struct CString {
812 buf: KVec<u8>,
813}
814
815impl CString {
816 /// Creates an instance of [`CString`] from the given formatted arguments.
817 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
818 // Calculate the size needed (formatted string plus `NUL` terminator).
819 let mut f = RawFormatter::new();
820 f.write_fmt(args)?;
821 f.write_str("\0")?;
822 let size = f.bytes_written();
823
824 // Allocate a vector with the required number of bytes, and write to it.
825 let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
826 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
827 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
828 f.write_fmt(args)?;
829 f.write_str("\0")?;
830
831 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
832 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
833 unsafe { buf.inc_len(f.bytes_written()) };
834
835 // Check that there are no `NUL` bytes before the end.
836 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
837 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
838 // so `f.bytes_written() - 1` doesn't underflow.
839 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
840 if !ptr.is_null() {
841 return Err(EINVAL);
842 }
843
844 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
845 // exist in the buffer.
846 Ok(Self { buf })
847 }
848}
849
850impl Deref for CString {
851 type Target = CStr;
852
853 fn deref(&self) -> &Self::Target {
854 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
855 // other `NUL` bytes exist.
856 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
857 }
858}
859
860impl DerefMut for CString {
861 fn deref_mut(&mut self) -> &mut Self::Target {
862 // SAFETY: A `CString` is always NUL-terminated and contains no other
863 // NUL bytes.
864 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
865 }
866}
867
868impl<'a> TryFrom<&'a CStr> for CString {
869 type Error = AllocError;
870
871 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
872 let mut buf = KVec::new();
873
874 buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
875
876 // INVARIANT: The `CStr` and `CString` types have the same invariants for
877 // the string data, and we copied it over without changes.
878 Ok(CString { buf })
879 }
880}
881
882impl fmt::Debug for CString {
883 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
884 fmt::Debug::fmt(&**self, f)
885 }
886}