kernel/
str.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! String representations.
4
5use crate::{
6    alloc::{flags::*, AllocError, KVec},
7    error::{to_result, Result},
8    fmt::{self, Write},
9    prelude::*,
10};
11use core::{
12    marker::PhantomData,
13    ops::{Deref, DerefMut, Index},
14};
15
16pub use crate::prelude::CStr;
17
18pub mod parse_int;
19
20/// Byte string without UTF-8 validity guarantee.
21#[repr(transparent)]
22pub struct BStr([u8]);
23
24impl BStr {
25    /// Returns the length of this string.
26    #[inline]
27    pub const fn len(&self) -> usize {
28        self.0.len()
29    }
30
31    /// Returns `true` if the string is empty.
32    #[inline]
33    pub const fn is_empty(&self) -> bool {
34        self.len() == 0
35    }
36
37    /// Creates a [`BStr`] from a `[u8]`.
38    #[inline]
39    pub const fn from_bytes(bytes: &[u8]) -> &Self {
40        // SAFETY: `BStr` is transparent to `[u8]`.
41        unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
42    }
43
44    /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
45    ///
46    /// # Examples
47    ///
48    /// ```
49    /// # use kernel::b_str;
50    /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
51    /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
52    /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
53    /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
54    /// ```
55    pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
56        self.deref()
57            .strip_prefix(pattern.as_ref().deref())
58            .map(Self::from_bytes)
59    }
60}
61
62impl fmt::Display for BStr {
63    /// Formats printable ASCII characters, escaping the rest.
64    ///
65    /// ```
66    /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
67    /// let ascii = b_str!("Hello, BStr!");
68    /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
69    /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
70    ///
71    /// let non_ascii = b_str!("🦀");
72    /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
73    /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
74    /// # Ok::<(), kernel::error::Error>(())
75    /// ```
76    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
77        for &b in &self.0 {
78            match b {
79                // Common escape codes.
80                b'\t' => f.write_str("\\t")?,
81                b'\n' => f.write_str("\\n")?,
82                b'\r' => f.write_str("\\r")?,
83                // Printable characters.
84                0x20..=0x7e => f.write_char(b as char)?,
85                _ => write!(f, "\\x{b:02x}")?,
86            }
87        }
88        Ok(())
89    }
90}
91
92impl fmt::Debug for BStr {
93    /// Formats printable ASCII characters with a double quote on either end,
94    /// escaping the rest.
95    ///
96    /// ```
97    /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
98    /// // Embedded double quotes are escaped.
99    /// let ascii = b_str!("Hello, \"BStr\"!");
100    /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
101    /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
102    ///
103    /// let non_ascii = b_str!("😺");
104    /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
105    /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
106    /// # Ok::<(), kernel::error::Error>(())
107    /// ```
108    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
109        f.write_char('"')?;
110        for &b in &self.0 {
111            match b {
112                // Common escape codes.
113                b'\t' => f.write_str("\\t")?,
114                b'\n' => f.write_str("\\n")?,
115                b'\r' => f.write_str("\\r")?,
116                // String escape characters.
117                b'\"' => f.write_str("\\\"")?,
118                b'\\' => f.write_str("\\\\")?,
119                // Printable characters.
120                0x20..=0x7e => f.write_char(b as char)?,
121                _ => write!(f, "\\x{b:02x}")?,
122            }
123        }
124        f.write_char('"')
125    }
126}
127
128impl Deref for BStr {
129    type Target = [u8];
130
131    #[inline]
132    fn deref(&self) -> &Self::Target {
133        &self.0
134    }
135}
136
137impl PartialEq for BStr {
138    fn eq(&self, other: &Self) -> bool {
139        self.deref().eq(other.deref())
140    }
141}
142
143impl<Idx> Index<Idx> for BStr
144where
145    [u8]: Index<Idx, Output = [u8]>,
146{
147    type Output = Self;
148
149    fn index(&self, index: Idx) -> &Self::Output {
150        BStr::from_bytes(&self.0[index])
151    }
152}
153
154impl AsRef<BStr> for [u8] {
155    fn as_ref(&self) -> &BStr {
156        BStr::from_bytes(self)
157    }
158}
159
160impl AsRef<BStr> for BStr {
161    fn as_ref(&self) -> &BStr {
162        self
163    }
164}
165
166/// Creates a new [`BStr`] from a string literal.
167///
168/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
169/// characters can be included.
170///
171/// # Examples
172///
173/// ```
174/// # use kernel::b_str;
175/// # use kernel::str::BStr;
176/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
177/// ```
178#[macro_export]
179macro_rules! b_str {
180    ($str:literal) => {{
181        const S: &'static str = $str;
182        const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
183        C
184    }};
185}
186
187/// Returns a C pointer to the string.
188// It is a free function rather than a method on an extension trait because:
189//
190// - error[E0379]: functions in trait impls cannot be declared const
191#[inline]
192pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
193    c_str.as_ptr().cast()
194}
195
196mod private {
197    pub trait Sealed {}
198
199    impl Sealed for super::CStr {}
200}
201
202/// Extensions to [`CStr`].
203pub trait CStrExt: private::Sealed {
204    /// Wraps a raw C string pointer.
205    ///
206    /// # Safety
207    ///
208    /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
209    /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
210    /// must not be mutated.
211    // This function exists to paper over the fact that `CStr::from_ptr` takes a `*const
212    // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
213    unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self;
214
215    /// Creates a mutable [`CStr`] from a `[u8]` without performing any
216    /// additional checks.
217    ///
218    /// # Safety
219    ///
220    /// `bytes` *must* end with a `NUL` byte, and should only have a single
221    /// `NUL` byte (or the string will be truncated).
222    unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self;
223
224    /// Returns a C pointer to the string.
225    // This function exists to paper over the fact that `CStr::as_ptr` returns a `*const
226    // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
227    fn as_char_ptr(&self) -> *const c_char;
228
229    /// Convert this [`CStr`] into a [`CString`] by allocating memory and
230    /// copying over the string data.
231    fn to_cstring(&self) -> Result<CString, AllocError>;
232
233    /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
234    ///
235    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
236    /// but non-ASCII letters are unchanged.
237    ///
238    /// To return a new lowercased value without modifying the existing one, use
239    /// [`to_ascii_lowercase()`].
240    ///
241    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
242    fn make_ascii_lowercase(&mut self);
243
244    /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
245    ///
246    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
247    /// but non-ASCII letters are unchanged.
248    ///
249    /// To return a new uppercased value without modifying the existing one, use
250    /// [`to_ascii_uppercase()`].
251    ///
252    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
253    fn make_ascii_uppercase(&mut self);
254
255    /// Returns a copy of this [`CString`] where each character is mapped to its
256    /// ASCII lower case equivalent.
257    ///
258    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
259    /// but non-ASCII letters are unchanged.
260    ///
261    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
262    ///
263    /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
264    fn to_ascii_lowercase(&self) -> Result<CString, AllocError>;
265
266    /// Returns a copy of this [`CString`] where each character is mapped to its
267    /// ASCII upper case equivalent.
268    ///
269    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
270    /// but non-ASCII letters are unchanged.
271    ///
272    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
273    ///
274    /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
275    fn to_ascii_uppercase(&self) -> Result<CString, AllocError>;
276}
277
278impl fmt::Display for CStr {
279    /// Formats printable ASCII characters, escaping the rest.
280    ///
281    /// ```
282    /// # use kernel::prelude::fmt;
283    /// # use kernel::str::CStr;
284    /// # use kernel::str::CString;
285    /// let penguin = c"🐧";
286    /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
287    /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
288    ///
289    /// let ascii = c"so \"cool\"";
290    /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
291    /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
292    /// # Ok::<(), kernel::error::Error>(())
293    /// ```
294    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
295        for &c in self.to_bytes() {
296            if (0x20..0x7f).contains(&c) {
297                // Printable character.
298                f.write_char(c as char)?;
299            } else {
300                write!(f, "\\x{c:02x}")?;
301            }
302        }
303        Ok(())
304    }
305}
306
307/// Converts a mutable C string to a mutable byte slice.
308///
309/// # Safety
310///
311/// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before
312/// the borrow ends and the underlying [`CStr`] is used.
313unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] {
314    // SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]`
315    // (this is technically not guaranteed, but we rely on it here). The pointer dereference is
316    // safe since it comes from a mutable reference which is guaranteed to be valid for writes.
317    unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) }
318}
319
320impl CStrExt for CStr {
321    #[inline]
322    unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
323        // SAFETY: The safety preconditions are the same as for `CStr::from_ptr`.
324        unsafe { CStr::from_ptr(ptr.cast()) }
325    }
326
327    #[inline]
328    unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self {
329        // SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are
330        // guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is
331        // technically not guaranteed, but we rely on it here). The pointer dereference is safe
332        // since it comes from a mutable reference which is guaranteed to be valid for writes.
333        unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
334    }
335
336    #[inline]
337    fn as_char_ptr(&self) -> *const c_char {
338        self.as_ptr().cast()
339    }
340
341    fn to_cstring(&self) -> Result<CString, AllocError> {
342        CString::try_from(self)
343    }
344
345    fn make_ascii_lowercase(&mut self) {
346        // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
347        unsafe { to_bytes_mut(self) }.make_ascii_lowercase();
348    }
349
350    fn make_ascii_uppercase(&mut self) {
351        // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
352        unsafe { to_bytes_mut(self) }.make_ascii_uppercase();
353    }
354
355    fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
356        let mut s = self.to_cstring()?;
357
358        s.make_ascii_lowercase();
359
360        Ok(s)
361    }
362
363    fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
364        let mut s = self.to_cstring()?;
365
366        s.make_ascii_uppercase();
367
368        Ok(s)
369    }
370}
371
372impl AsRef<BStr> for CStr {
373    #[inline]
374    fn as_ref(&self) -> &BStr {
375        BStr::from_bytes(self.to_bytes())
376    }
377}
378
379/// Creates a new [`CStr`] from a string literal.
380///
381/// The string literal should not contain any `NUL` bytes.
382///
383/// # Examples
384///
385/// ```
386/// # use kernel::c_str;
387/// # use kernel::str::CStr;
388/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
389/// ```
390#[macro_export]
391macro_rules! c_str {
392    ($str:expr) => {{
393        const S: &str = concat!($str, "\0");
394        const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
395            Ok(v) => v,
396            Err(_) => panic!("string contains interior NUL"),
397        };
398        C
399    }};
400}
401
402#[kunit_tests(rust_kernel_str)]
403mod tests {
404    use super::*;
405
406    impl From<core::ffi::FromBytesWithNulError> for Error {
407        #[inline]
408        fn from(_: core::ffi::FromBytesWithNulError) -> Error {
409            EINVAL
410        }
411    }
412
413    macro_rules! format {
414        ($($f:tt)*) => ({
415            CString::try_from_fmt(fmt!($($f)*))?.to_str()?
416        })
417    }
418
419    const ALL_ASCII_CHARS: &str =
420        "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
421        \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
422        !\"#$%&'()*+,-./0123456789:;<=>?@\
423        ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
424        \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
425        \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
426        \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
427        \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
428        \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
429        \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
430        \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
431        \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
432
433    #[test]
434    fn test_cstr_to_str() -> Result {
435        let cstr = c"\xf0\x9f\xa6\x80";
436        let checked_str = cstr.to_str()?;
437        assert_eq!(checked_str, "🦀");
438        Ok(())
439    }
440
441    #[test]
442    fn test_cstr_to_str_invalid_utf8() -> Result {
443        let cstr = c"\xc3\x28";
444        assert!(cstr.to_str().is_err());
445        Ok(())
446    }
447
448    #[test]
449    fn test_cstr_display() -> Result {
450        let hello_world = c"hello, world!";
451        assert_eq!(format!("{hello_world}"), "hello, world!");
452        let non_printables = c"\x01\x09\x0a";
453        assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
454        let non_ascii = c"d\xe9j\xe0 vu";
455        assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
456        let good_bytes = c"\xf0\x9f\xa6\x80";
457        assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
458        Ok(())
459    }
460
461    #[test]
462    fn test_cstr_display_all_bytes() -> Result {
463        let mut bytes: [u8; 256] = [0; 256];
464        // fill `bytes` with [1..=255] + [0]
465        for i in u8::MIN..=u8::MAX {
466            bytes[i as usize] = i.wrapping_add(1);
467        }
468        let cstr = CStr::from_bytes_with_nul(&bytes)?;
469        assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
470        Ok(())
471    }
472
473    #[test]
474    fn test_cstr_debug() -> Result {
475        let hello_world = c"hello, world!";
476        assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
477        let non_printables = c"\x01\x09\x0a";
478        assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\"");
479        let non_ascii = c"d\xe9j\xe0 vu";
480        assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
481        Ok(())
482    }
483
484    #[test]
485    fn test_bstr_display() -> Result {
486        let hello_world = BStr::from_bytes(b"hello, world!");
487        assert_eq!(format!("{hello_world}"), "hello, world!");
488        let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
489        assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
490        let others = BStr::from_bytes(b"\x01");
491        assert_eq!(format!("{others}"), "\\x01");
492        let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
493        assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
494        let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
495        assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
496        Ok(())
497    }
498
499    #[test]
500    fn test_bstr_debug() -> Result {
501        let hello_world = BStr::from_bytes(b"hello, world!");
502        assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
503        let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
504        assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
505        let others = BStr::from_bytes(b"\x01");
506        assert_eq!(format!("{others:?}"), "\"\\x01\"");
507        let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
508        assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
509        let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
510        assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
511        Ok(())
512    }
513}
514
515/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
516///
517/// It does not fail if callers write past the end of the buffer so that they can calculate the
518/// size required to fit everything.
519///
520/// # Invariants
521///
522/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
523/// is less than `end`.
524pub struct RawFormatter {
525    // Use `usize` to use `saturating_*` functions.
526    beg: usize,
527    pos: usize,
528    end: usize,
529}
530
531impl RawFormatter {
532    /// Creates a new instance of [`RawFormatter`] with an empty buffer.
533    fn new() -> Self {
534        // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
535        Self {
536            beg: 0,
537            pos: 0,
538            end: 0,
539        }
540    }
541
542    /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
543    ///
544    /// # Safety
545    ///
546    /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
547    /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
548    pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
549        // INVARIANT: The safety requirements guarantee the type invariants.
550        Self {
551            beg: pos as usize,
552            pos: pos as usize,
553            end: end as usize,
554        }
555    }
556
557    /// Creates a new instance of [`RawFormatter`] with the given buffer.
558    ///
559    /// # Safety
560    ///
561    /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
562    /// for the lifetime of the returned [`RawFormatter`].
563    pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
564        let pos = buf as usize;
565        // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
566        // guarantees that the memory region is valid for writes.
567        Self {
568            pos,
569            beg: pos,
570            end: pos.saturating_add(len),
571        }
572    }
573
574    /// Returns the current insert position.
575    ///
576    /// N.B. It may point to invalid memory.
577    pub(crate) fn pos(&self) -> *mut u8 {
578        self.pos as *mut u8
579    }
580
581    /// Returns the number of bytes written to the formatter.
582    pub fn bytes_written(&self) -> usize {
583        self.pos - self.beg
584    }
585}
586
587impl fmt::Write for RawFormatter {
588    fn write_str(&mut self, s: &str) -> fmt::Result {
589        // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
590        // don't want it to wrap around to 0.
591        let pos_new = self.pos.saturating_add(s.len());
592
593        // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
594        let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
595
596        if len_to_copy > 0 {
597            // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
598            // yet, so it is valid for write per the type invariants.
599            unsafe {
600                core::ptr::copy_nonoverlapping(
601                    s.as_bytes().as_ptr(),
602                    self.pos as *mut u8,
603                    len_to_copy,
604                )
605            };
606        }
607
608        self.pos = pos_new;
609        Ok(())
610    }
611}
612
613/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
614///
615/// Fails if callers attempt to write more than will fit in the buffer.
616pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
617
618impl Formatter<'_> {
619    /// Creates a new instance of [`Formatter`] with the given buffer.
620    ///
621    /// # Safety
622    ///
623    /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
624    /// for the lifetime of the returned [`Formatter`].
625    pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
626        // SAFETY: The safety requirements of this function satisfy those of the callee.
627        Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
628    }
629
630    /// Create a new [`Self`] instance.
631    pub fn new(buffer: &mut [u8]) -> Self {
632        // SAFETY: `buffer` is valid for writes for the entire length for
633        // the lifetime of `Self`.
634        unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
635    }
636}
637
638impl Deref for Formatter<'_> {
639    type Target = RawFormatter;
640
641    fn deref(&self) -> &Self::Target {
642        &self.0
643    }
644}
645
646impl fmt::Write for Formatter<'_> {
647    fn write_str(&mut self, s: &str) -> fmt::Result {
648        self.0.write_str(s)?;
649
650        // Fail the request if we go past the end of the buffer.
651        if self.0.pos > self.0.end {
652            Err(fmt::Error)
653        } else {
654            Ok(())
655        }
656    }
657}
658
659/// A mutable reference to a byte buffer where a string can be written into.
660///
661/// The buffer will be automatically null terminated after the last written character.
662///
663/// # Invariants
664///
665/// * The first byte of `buffer` is always zero.
666/// * The length of `buffer` is at least 1.
667pub(crate) struct NullTerminatedFormatter<'a> {
668    buffer: &'a mut [u8],
669}
670
671impl<'a> NullTerminatedFormatter<'a> {
672    /// Create a new [`Self`] instance.
673    pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
674        *(buffer.first_mut()?) = 0;
675
676        // INVARIANT:
677        //  - We wrote zero to the first byte above.
678        //  - If buffer was not at least length 1, `buffer.first_mut()` would return None.
679        Some(Self { buffer })
680    }
681}
682
683impl Write for NullTerminatedFormatter<'_> {
684    fn write_str(&mut self, s: &str) -> fmt::Result {
685        let bytes = s.as_bytes();
686        let len = bytes.len();
687
688        // We want space for a zero. By type invariant, buffer length is always at least 1, so no
689        // underflow.
690        if len > self.buffer.len() - 1 {
691            return Err(fmt::Error);
692        }
693
694        let buffer = core::mem::take(&mut self.buffer);
695        // We break the zero start invariant for a short while.
696        buffer[..len].copy_from_slice(bytes);
697        // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
698        self.buffer = &mut buffer[len..];
699
700        // INVARIANT: We write zero to the first byte of the buffer.
701        self.buffer[0] = 0;
702
703        Ok(())
704    }
705}
706
707/// # Safety
708///
709/// - `string` must point to a null terminated string that is valid for read.
710unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
711    let mut result: bool = false;
712
713    // SAFETY:
714    // - By function safety requirement, `string` is a valid null-terminated string.
715    // - `result` is a valid `bool` that we own.
716    to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
717    Ok(result)
718}
719
720/// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
721///
722/// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
723/// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
724///
725/// # Examples
726///
727/// ```
728/// # use kernel::str::kstrtobool;
729///
730/// // Lowercase
731/// assert_eq!(kstrtobool(c"true"), Ok(true));
732/// assert_eq!(kstrtobool(c"tr"), Ok(true));
733/// assert_eq!(kstrtobool(c"t"), Ok(true));
734/// assert_eq!(kstrtobool(c"twrong"), Ok(true));
735/// assert_eq!(kstrtobool(c"false"), Ok(false));
736/// assert_eq!(kstrtobool(c"f"), Ok(false));
737/// assert_eq!(kstrtobool(c"yes"), Ok(true));
738/// assert_eq!(kstrtobool(c"no"), Ok(false));
739/// assert_eq!(kstrtobool(c"on"), Ok(true));
740/// assert_eq!(kstrtobool(c"off"), Ok(false));
741///
742/// // Camel case
743/// assert_eq!(kstrtobool(c"True"), Ok(true));
744/// assert_eq!(kstrtobool(c"False"), Ok(false));
745/// assert_eq!(kstrtobool(c"Yes"), Ok(true));
746/// assert_eq!(kstrtobool(c"No"), Ok(false));
747/// assert_eq!(kstrtobool(c"On"), Ok(true));
748/// assert_eq!(kstrtobool(c"Off"), Ok(false));
749///
750/// // All caps
751/// assert_eq!(kstrtobool(c"TRUE"), Ok(true));
752/// assert_eq!(kstrtobool(c"FALSE"), Ok(false));
753/// assert_eq!(kstrtobool(c"YES"), Ok(true));
754/// assert_eq!(kstrtobool(c"NO"), Ok(false));
755/// assert_eq!(kstrtobool(c"ON"), Ok(true));
756/// assert_eq!(kstrtobool(c"OFF"), Ok(false));
757///
758/// // Numeric
759/// assert_eq!(kstrtobool(c"1"), Ok(true));
760/// assert_eq!(kstrtobool(c"0"), Ok(false));
761///
762/// // Invalid input
763/// assert_eq!(kstrtobool(c"invalid"), Err(EINVAL));
764/// assert_eq!(kstrtobool(c"2"), Err(EINVAL));
765/// ```
766pub fn kstrtobool(string: &CStr) -> Result<bool> {
767    // SAFETY:
768    // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
769    //   null terminated.
770    // - `string` is live and thus the string is valid for read.
771    unsafe { kstrtobool_raw(string.as_char_ptr()) }
772}
773
774/// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
775///
776/// Only considers at most the first two bytes of `bytes`.
777pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
778    // `ktostrbool` only considers the first two bytes of the input.
779    let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
780    // SAFETY: `stack_string` is null terminated and it is live on the stack so
781    // it is valid for read.
782    unsafe { kstrtobool_raw(stack_string.as_ptr()) }
783}
784
785/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
786///
787/// Used for interoperability with kernel APIs that take C strings.
788///
789/// # Invariants
790///
791/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
792///
793/// # Examples
794///
795/// ```
796/// use kernel::{str::CString, prelude::fmt};
797///
798/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
799/// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
800///
801/// let tmp = "testing";
802/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
803/// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
804///
805/// // This fails because it has an embedded `NUL` byte.
806/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
807/// assert_eq!(s.is_ok(), false);
808/// # Ok::<(), kernel::error::Error>(())
809/// ```
810pub struct CString {
811    buf: KVec<u8>,
812}
813
814impl CString {
815    /// Creates an instance of [`CString`] from the given formatted arguments.
816    pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
817        // Calculate the size needed (formatted string plus `NUL` terminator).
818        let mut f = RawFormatter::new();
819        f.write_fmt(args)?;
820        f.write_str("\0")?;
821        let size = f.bytes_written();
822
823        // Allocate a vector with the required number of bytes, and write to it.
824        let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
825        // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
826        let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
827        f.write_fmt(args)?;
828        f.write_str("\0")?;
829
830        // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
831        // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
832        unsafe { buf.inc_len(f.bytes_written()) };
833
834        // Check that there are no `NUL` bytes before the end.
835        // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
836        // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
837        // so `f.bytes_written() - 1` doesn't underflow.
838        let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
839        if !ptr.is_null() {
840            return Err(EINVAL);
841        }
842
843        // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
844        // exist in the buffer.
845        Ok(Self { buf })
846    }
847}
848
849impl Deref for CString {
850    type Target = CStr;
851
852    fn deref(&self) -> &Self::Target {
853        // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
854        // other `NUL` bytes exist.
855        unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
856    }
857}
858
859impl DerefMut for CString {
860    fn deref_mut(&mut self) -> &mut Self::Target {
861        // SAFETY: A `CString` is always NUL-terminated and contains no other
862        // NUL bytes.
863        unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
864    }
865}
866
867impl<'a> TryFrom<&'a CStr> for CString {
868    type Error = AllocError;
869
870    fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
871        let mut buf = KVec::new();
872
873        buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
874
875        // INVARIANT: The `CStr` and `CString` types have the same invariants for
876        // the string data, and we copied it over without changes.
877        Ok(CString { buf })
878    }
879}
880
881impl fmt::Debug for CString {
882    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
883        fmt::Debug::fmt(&**self, f)
884    }
885}