kernel/
str.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! String representations.
4
5use crate::alloc::{flags::*, AllocError, KVec};
6use core::fmt::{self, Write};
7use core::ops::{self, Deref, DerefMut, Index};
8
9use crate::error::{code::*, Error};
10
11/// Byte string without UTF-8 validity guarantee.
12#[repr(transparent)]
13pub struct BStr([u8]);
14
15impl BStr {
16    /// Returns the length of this string.
17    #[inline]
18    pub const fn len(&self) -> usize {
19        self.0.len()
20    }
21
22    /// Returns `true` if the string is empty.
23    #[inline]
24    pub const fn is_empty(&self) -> bool {
25        self.len() == 0
26    }
27
28    /// Creates a [`BStr`] from a `[u8]`.
29    #[inline]
30    pub const fn from_bytes(bytes: &[u8]) -> &Self {
31        // SAFETY: `BStr` is transparent to `[u8]`.
32        unsafe { &*(bytes as *const [u8] as *const BStr) }
33    }
34
35    /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
36    ///
37    /// # Examples
38    ///
39    /// ```
40    /// # use kernel::b_str;
41    /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
42    /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
43    /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
44    /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
45    /// ```
46    pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
47        self.deref()
48            .strip_prefix(pattern.as_ref().deref())
49            .map(Self::from_bytes)
50    }
51}
52
53impl fmt::Display for BStr {
54    /// Formats printable ASCII characters, escaping the rest.
55    ///
56    /// ```
57    /// # use kernel::{fmt, b_str, str::{BStr, CString}};
58    /// let ascii = b_str!("Hello, BStr!");
59    /// let s = CString::try_from_fmt(fmt!("{}", ascii))?;
60    /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
61    ///
62    /// let non_ascii = b_str!("🦀");
63    /// let s = CString::try_from_fmt(fmt!("{}", non_ascii))?;
64    /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
65    /// # Ok::<(), kernel::error::Error>(())
66    /// ```
67    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
68        for &b in &self.0 {
69            match b {
70                // Common escape codes.
71                b'\t' => f.write_str("\\t")?,
72                b'\n' => f.write_str("\\n")?,
73                b'\r' => f.write_str("\\r")?,
74                // Printable characters.
75                0x20..=0x7e => f.write_char(b as char)?,
76                _ => write!(f, "\\x{:02x}", b)?,
77            }
78        }
79        Ok(())
80    }
81}
82
83impl fmt::Debug for BStr {
84    /// Formats printable ASCII characters with a double quote on either end,
85    /// escaping the rest.
86    ///
87    /// ```
88    /// # use kernel::{fmt, b_str, str::{BStr, CString}};
89    /// // Embedded double quotes are escaped.
90    /// let ascii = b_str!("Hello, \"BStr\"!");
91    /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?;
92    /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
93    ///
94    /// let non_ascii = b_str!("😺");
95    /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii))?;
96    /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
97    /// # Ok::<(), kernel::error::Error>(())
98    /// ```
99    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
100        f.write_char('"')?;
101        for &b in &self.0 {
102            match b {
103                // Common escape codes.
104                b'\t' => f.write_str("\\t")?,
105                b'\n' => f.write_str("\\n")?,
106                b'\r' => f.write_str("\\r")?,
107                // String escape characters.
108                b'\"' => f.write_str("\\\"")?,
109                b'\\' => f.write_str("\\\\")?,
110                // Printable characters.
111                0x20..=0x7e => f.write_char(b as char)?,
112                _ => write!(f, "\\x{:02x}", b)?,
113            }
114        }
115        f.write_char('"')
116    }
117}
118
119impl Deref for BStr {
120    type Target = [u8];
121
122    #[inline]
123    fn deref(&self) -> &Self::Target {
124        &self.0
125    }
126}
127
128impl PartialEq for BStr {
129    fn eq(&self, other: &Self) -> bool {
130        self.deref().eq(other.deref())
131    }
132}
133
134impl<Idx> Index<Idx> for BStr
135where
136    [u8]: Index<Idx, Output = [u8]>,
137{
138    type Output = Self;
139
140    fn index(&self, index: Idx) -> &Self::Output {
141        BStr::from_bytes(&self.0[index])
142    }
143}
144
145impl AsRef<BStr> for [u8] {
146    fn as_ref(&self) -> &BStr {
147        BStr::from_bytes(self)
148    }
149}
150
151impl AsRef<BStr> for BStr {
152    fn as_ref(&self) -> &BStr {
153        self
154    }
155}
156
157/// Creates a new [`BStr`] from a string literal.
158///
159/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
160/// characters can be included.
161///
162/// # Examples
163///
164/// ```
165/// # use kernel::b_str;
166/// # use kernel::str::BStr;
167/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
168/// ```
169#[macro_export]
170macro_rules! b_str {
171    ($str:literal) => {{
172        const S: &'static str = $str;
173        const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
174        C
175    }};
176}
177
178/// Possible errors when using conversion functions in [`CStr`].
179#[derive(Debug, Clone, Copy)]
180pub enum CStrConvertError {
181    /// Supplied bytes contain an interior `NUL`.
182    InteriorNul,
183
184    /// Supplied bytes are not terminated by `NUL`.
185    NotNulTerminated,
186}
187
188impl From<CStrConvertError> for Error {
189    #[inline]
190    fn from(_: CStrConvertError) -> Error {
191        EINVAL
192    }
193}
194
195/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
196/// end.
197///
198/// Used for interoperability with kernel APIs that take C strings.
199#[repr(transparent)]
200pub struct CStr([u8]);
201
202impl CStr {
203    /// Returns the length of this string excluding `NUL`.
204    #[inline]
205    pub const fn len(&self) -> usize {
206        self.len_with_nul() - 1
207    }
208
209    /// Returns the length of this string with `NUL`.
210    #[inline]
211    pub const fn len_with_nul(&self) -> usize {
212        if self.0.is_empty() {
213            // SAFETY: This is one of the invariant of `CStr`.
214            // We add a `unreachable_unchecked` here to hint the optimizer that
215            // the value returned from this function is non-zero.
216            unsafe { core::hint::unreachable_unchecked() };
217        }
218        self.0.len()
219    }
220
221    /// Returns `true` if the string only includes `NUL`.
222    #[inline]
223    pub const fn is_empty(&self) -> bool {
224        self.len() == 0
225    }
226
227    /// Wraps a raw C string pointer.
228    ///
229    /// # Safety
230    ///
231    /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
232    /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
233    /// must not be mutated.
234    #[inline]
235    pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self {
236        // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
237        // to a `NUL`-terminated C string.
238        let len = unsafe { bindings::strlen(ptr) } + 1;
239        // SAFETY: Lifetime guaranteed by the safety precondition.
240        let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len) };
241        // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
242        // As we have added 1 to `len`, the last byte is known to be `NUL`.
243        unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
244    }
245
246    /// Creates a [`CStr`] from a `[u8]`.
247    ///
248    /// The provided slice must be `NUL`-terminated, does not contain any
249    /// interior `NUL` bytes.
250    pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
251        if bytes.is_empty() {
252            return Err(CStrConvertError::NotNulTerminated);
253        }
254        if bytes[bytes.len() - 1] != 0 {
255            return Err(CStrConvertError::NotNulTerminated);
256        }
257        let mut i = 0;
258        // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
259        // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
260        while i + 1 < bytes.len() {
261            if bytes[i] == 0 {
262                return Err(CStrConvertError::InteriorNul);
263            }
264            i += 1;
265        }
266        // SAFETY: We just checked that all properties hold.
267        Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
268    }
269
270    /// Creates a [`CStr`] from a `[u8]` without performing any additional
271    /// checks.
272    ///
273    /// # Safety
274    ///
275    /// `bytes` *must* end with a `NUL` byte, and should only have a single
276    /// `NUL` byte (or the string will be truncated).
277    #[inline]
278    pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
279        // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
280        unsafe { core::mem::transmute(bytes) }
281    }
282
283    /// Creates a mutable [`CStr`] from a `[u8]` without performing any
284    /// additional checks.
285    ///
286    /// # Safety
287    ///
288    /// `bytes` *must* end with a `NUL` byte, and should only have a single
289    /// `NUL` byte (or the string will be truncated).
290    #[inline]
291    pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
292        // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
293        unsafe { &mut *(bytes as *mut [u8] as *mut CStr) }
294    }
295
296    /// Returns a C pointer to the string.
297    #[inline]
298    pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char {
299        self.0.as_ptr()
300    }
301
302    /// Convert the string to a byte slice without the trailing `NUL` byte.
303    #[inline]
304    pub fn as_bytes(&self) -> &[u8] {
305        &self.0[..self.len()]
306    }
307
308    /// Convert the string to a byte slice containing the trailing `NUL` byte.
309    #[inline]
310    pub const fn as_bytes_with_nul(&self) -> &[u8] {
311        &self.0
312    }
313
314    /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
315    ///
316    /// If the contents of the [`CStr`] are valid UTF-8 data, this
317    /// function will return the corresponding [`&str`] slice. Otherwise,
318    /// it will return an error with details of where UTF-8 validation failed.
319    ///
320    /// # Examples
321    ///
322    /// ```
323    /// # use kernel::str::CStr;
324    /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
325    /// assert_eq!(cstr.to_str(), Ok("foo"));
326    /// # Ok::<(), kernel::error::Error>(())
327    /// ```
328    #[inline]
329    pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
330        core::str::from_utf8(self.as_bytes())
331    }
332
333    /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
334    /// valid UTF-8.
335    ///
336    /// # Safety
337    ///
338    /// The contents must be valid UTF-8.
339    ///
340    /// # Examples
341    ///
342    /// ```
343    /// # use kernel::c_str;
344    /// # use kernel::str::CStr;
345    /// let bar = c_str!("ツ");
346    /// // SAFETY: String literals are guaranteed to be valid UTF-8
347    /// // by the Rust compiler.
348    /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
349    /// ```
350    #[inline]
351    pub unsafe fn as_str_unchecked(&self) -> &str {
352        // SAFETY: TODO.
353        unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
354    }
355
356    /// Convert this [`CStr`] into a [`CString`] by allocating memory and
357    /// copying over the string data.
358    pub fn to_cstring(&self) -> Result<CString, AllocError> {
359        CString::try_from(self)
360    }
361
362    /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
363    ///
364    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
365    /// but non-ASCII letters are unchanged.
366    ///
367    /// To return a new lowercased value without modifying the existing one, use
368    /// [`to_ascii_lowercase()`].
369    ///
370    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
371    pub fn make_ascii_lowercase(&mut self) {
372        // INVARIANT: This doesn't introduce or remove NUL bytes in the C
373        // string.
374        self.0.make_ascii_lowercase();
375    }
376
377    /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
378    ///
379    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
380    /// but non-ASCII letters are unchanged.
381    ///
382    /// To return a new uppercased value without modifying the existing one, use
383    /// [`to_ascii_uppercase()`].
384    ///
385    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
386    pub fn make_ascii_uppercase(&mut self) {
387        // INVARIANT: This doesn't introduce or remove NUL bytes in the C
388        // string.
389        self.0.make_ascii_uppercase();
390    }
391
392    /// Returns a copy of this [`CString`] where each character is mapped to its
393    /// ASCII lower case equivalent.
394    ///
395    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
396    /// but non-ASCII letters are unchanged.
397    ///
398    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
399    ///
400    /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
401    pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
402        let mut s = self.to_cstring()?;
403
404        s.make_ascii_lowercase();
405
406        Ok(s)
407    }
408
409    /// Returns a copy of this [`CString`] where each character is mapped to its
410    /// ASCII upper case equivalent.
411    ///
412    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
413    /// but non-ASCII letters are unchanged.
414    ///
415    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
416    ///
417    /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
418    pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
419        let mut s = self.to_cstring()?;
420
421        s.make_ascii_uppercase();
422
423        Ok(s)
424    }
425}
426
427impl fmt::Display for CStr {
428    /// Formats printable ASCII characters, escaping the rest.
429    ///
430    /// ```
431    /// # use kernel::c_str;
432    /// # use kernel::fmt;
433    /// # use kernel::str::CStr;
434    /// # use kernel::str::CString;
435    /// let penguin = c_str!("🐧");
436    /// let s = CString::try_from_fmt(fmt!("{}", penguin))?;
437    /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
438    ///
439    /// let ascii = c_str!("so \"cool\"");
440    /// let s = CString::try_from_fmt(fmt!("{}", ascii))?;
441    /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
442    /// # Ok::<(), kernel::error::Error>(())
443    /// ```
444    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
445        for &c in self.as_bytes() {
446            if (0x20..0x7f).contains(&c) {
447                // Printable character.
448                f.write_char(c as char)?;
449            } else {
450                write!(f, "\\x{:02x}", c)?;
451            }
452        }
453        Ok(())
454    }
455}
456
457impl fmt::Debug for CStr {
458    /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
459    ///
460    /// ```
461    /// # use kernel::c_str;
462    /// # use kernel::fmt;
463    /// # use kernel::str::CStr;
464    /// # use kernel::str::CString;
465    /// let penguin = c_str!("🐧");
466    /// let s = CString::try_from_fmt(fmt!("{:?}", penguin))?;
467    /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
468    ///
469    /// // Embedded double quotes are escaped.
470    /// let ascii = c_str!("so \"cool\"");
471    /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?;
472    /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
473    /// # Ok::<(), kernel::error::Error>(())
474    /// ```
475    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
476        f.write_str("\"")?;
477        for &c in self.as_bytes() {
478            match c {
479                // Printable characters.
480                b'\"' => f.write_str("\\\"")?,
481                0x20..=0x7e => f.write_char(c as char)?,
482                _ => write!(f, "\\x{:02x}", c)?,
483            }
484        }
485        f.write_str("\"")
486    }
487}
488
489impl AsRef<BStr> for CStr {
490    #[inline]
491    fn as_ref(&self) -> &BStr {
492        BStr::from_bytes(self.as_bytes())
493    }
494}
495
496impl Deref for CStr {
497    type Target = BStr;
498
499    #[inline]
500    fn deref(&self) -> &Self::Target {
501        self.as_ref()
502    }
503}
504
505impl Index<ops::RangeFrom<usize>> for CStr {
506    type Output = CStr;
507
508    #[inline]
509    fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
510        // Delegate bounds checking to slice.
511        // Assign to _ to mute clippy's unnecessary operation warning.
512        let _ = &self.as_bytes()[index.start..];
513        // SAFETY: We just checked the bounds.
514        unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
515    }
516}
517
518impl Index<ops::RangeFull> for CStr {
519    type Output = CStr;
520
521    #[inline]
522    fn index(&self, _index: ops::RangeFull) -> &Self::Output {
523        self
524    }
525}
526
527mod private {
528    use core::ops;
529
530    // Marker trait for index types that can be forward to `BStr`.
531    pub trait CStrIndex {}
532
533    impl CStrIndex for usize {}
534    impl CStrIndex for ops::Range<usize> {}
535    impl CStrIndex for ops::RangeInclusive<usize> {}
536    impl CStrIndex for ops::RangeToInclusive<usize> {}
537}
538
539impl<Idx> Index<Idx> for CStr
540where
541    Idx: private::CStrIndex,
542    BStr: Index<Idx>,
543{
544    type Output = <BStr as Index<Idx>>::Output;
545
546    #[inline]
547    fn index(&self, index: Idx) -> &Self::Output {
548        &self.as_ref()[index]
549    }
550}
551
552/// Creates a new [`CStr`] from a string literal.
553///
554/// The string literal should not contain any `NUL` bytes.
555///
556/// # Examples
557///
558/// ```
559/// # use kernel::c_str;
560/// # use kernel::str::CStr;
561/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
562/// ```
563#[macro_export]
564macro_rules! c_str {
565    ($str:expr) => {{
566        const S: &str = concat!($str, "\0");
567        const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
568            Ok(v) => v,
569            Err(_) => panic!("string contains interior NUL"),
570        };
571        C
572    }};
573}
574
575#[cfg(test)]
576#[expect(clippy::items_after_test_module)]
577mod tests {
578    use super::*;
579
580    struct String(CString);
581
582    impl String {
583        fn from_fmt(args: fmt::Arguments<'_>) -> Self {
584            String(CString::try_from_fmt(args).unwrap())
585        }
586    }
587
588    impl Deref for String {
589        type Target = str;
590
591        fn deref(&self) -> &str {
592            self.0.to_str().unwrap()
593        }
594    }
595
596    macro_rules! format {
597        ($($f:tt)*) => ({
598            &*String::from_fmt(kernel::fmt!($($f)*))
599        })
600    }
601
602    const ALL_ASCII_CHARS: &str =
603        "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
604        \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
605        !\"#$%&'()*+,-./0123456789:;<=>?@\
606        ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
607        \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
608        \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
609        \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
610        \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
611        \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
612        \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
613        \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
614        \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
615
616    #[test]
617    fn test_cstr_to_str() {
618        let good_bytes = b"\xf0\x9f\xa6\x80\0";
619        let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
620        let checked_str = checked_cstr.to_str().unwrap();
621        assert_eq!(checked_str, "🦀");
622    }
623
624    #[test]
625    #[should_panic]
626    fn test_cstr_to_str_panic() {
627        let bad_bytes = b"\xc3\x28\0";
628        let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
629        checked_cstr.to_str().unwrap();
630    }
631
632    #[test]
633    fn test_cstr_as_str_unchecked() {
634        let good_bytes = b"\xf0\x9f\x90\xA7\0";
635        let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
636        // SAFETY: The contents come from a string literal which contains valid UTF-8.
637        let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
638        assert_eq!(unchecked_str, "🐧");
639    }
640
641    #[test]
642    fn test_cstr_display() {
643        let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
644        assert_eq!(format!("{}", hello_world), "hello, world!");
645        let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
646        assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a");
647        let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
648        assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
649        let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
650        assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
651    }
652
653    #[test]
654    fn test_cstr_display_all_bytes() {
655        let mut bytes: [u8; 256] = [0; 256];
656        // fill `bytes` with [1..=255] + [0]
657        for i in u8::MIN..=u8::MAX {
658            bytes[i as usize] = i.wrapping_add(1);
659        }
660        let cstr = CStr::from_bytes_with_nul(&bytes).unwrap();
661        assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS);
662    }
663
664    #[test]
665    fn test_cstr_debug() {
666        let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
667        assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
668        let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
669        assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\"");
670        let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
671        assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
672        let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
673        assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
674    }
675
676    #[test]
677    fn test_bstr_display() {
678        let hello_world = BStr::from_bytes(b"hello, world!");
679        assert_eq!(format!("{}", hello_world), "hello, world!");
680        let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
681        assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_");
682        let others = BStr::from_bytes(b"\x01");
683        assert_eq!(format!("{}", others), "\\x01");
684        let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
685        assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
686        let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
687        assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
688    }
689
690    #[test]
691    fn test_bstr_debug() {
692        let hello_world = BStr::from_bytes(b"hello, world!");
693        assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
694        let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
695        assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
696        let others = BStr::from_bytes(b"\x01");
697        assert_eq!(format!("{:?}", others), "\"\\x01\"");
698        let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
699        assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
700        let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
701        assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
702    }
703}
704
705/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
706///
707/// It does not fail if callers write past the end of the buffer so that they can calculate the
708/// size required to fit everything.
709///
710/// # Invariants
711///
712/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
713/// is less than `end`.
714pub(crate) struct RawFormatter {
715    // Use `usize` to use `saturating_*` functions.
716    beg: usize,
717    pos: usize,
718    end: usize,
719}
720
721impl RawFormatter {
722    /// Creates a new instance of [`RawFormatter`] with an empty buffer.
723    fn new() -> Self {
724        // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
725        Self {
726            beg: 0,
727            pos: 0,
728            end: 0,
729        }
730    }
731
732    /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
733    ///
734    /// # Safety
735    ///
736    /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
737    /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
738    pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
739        // INVARIANT: The safety requirements guarantee the type invariants.
740        Self {
741            beg: pos as _,
742            pos: pos as _,
743            end: end as _,
744        }
745    }
746
747    /// Creates a new instance of [`RawFormatter`] with the given buffer.
748    ///
749    /// # Safety
750    ///
751    /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
752    /// for the lifetime of the returned [`RawFormatter`].
753    pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
754        let pos = buf as usize;
755        // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
756        // guarantees that the memory region is valid for writes.
757        Self {
758            pos,
759            beg: pos,
760            end: pos.saturating_add(len),
761        }
762    }
763
764    /// Returns the current insert position.
765    ///
766    /// N.B. It may point to invalid memory.
767    pub(crate) fn pos(&self) -> *mut u8 {
768        self.pos as _
769    }
770
771    /// Returns the number of bytes written to the formatter.
772    pub(crate) fn bytes_written(&self) -> usize {
773        self.pos - self.beg
774    }
775}
776
777impl fmt::Write for RawFormatter {
778    fn write_str(&mut self, s: &str) -> fmt::Result {
779        // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
780        // don't want it to wrap around to 0.
781        let pos_new = self.pos.saturating_add(s.len());
782
783        // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
784        let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
785
786        if len_to_copy > 0 {
787            // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
788            // yet, so it is valid for write per the type invariants.
789            unsafe {
790                core::ptr::copy_nonoverlapping(
791                    s.as_bytes().as_ptr(),
792                    self.pos as *mut u8,
793                    len_to_copy,
794                )
795            };
796        }
797
798        self.pos = pos_new;
799        Ok(())
800    }
801}
802
803/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
804///
805/// Fails if callers attempt to write more than will fit in the buffer.
806pub(crate) struct Formatter(RawFormatter);
807
808impl Formatter {
809    /// Creates a new instance of [`Formatter`] with the given buffer.
810    ///
811    /// # Safety
812    ///
813    /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
814    /// for the lifetime of the returned [`Formatter`].
815    pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
816        // SAFETY: The safety requirements of this function satisfy those of the callee.
817        Self(unsafe { RawFormatter::from_buffer(buf, len) })
818    }
819}
820
821impl Deref for Formatter {
822    type Target = RawFormatter;
823
824    fn deref(&self) -> &Self::Target {
825        &self.0
826    }
827}
828
829impl fmt::Write for Formatter {
830    fn write_str(&mut self, s: &str) -> fmt::Result {
831        self.0.write_str(s)?;
832
833        // Fail the request if we go past the end of the buffer.
834        if self.0.pos > self.0.end {
835            Err(fmt::Error)
836        } else {
837            Ok(())
838        }
839    }
840}
841
842/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
843///
844/// Used for interoperability with kernel APIs that take C strings.
845///
846/// # Invariants
847///
848/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
849///
850/// # Examples
851///
852/// ```
853/// use kernel::{str::CString, fmt};
854///
855/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
856/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
857///
858/// let tmp = "testing";
859/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
860/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
861///
862/// // This fails because it has an embedded `NUL` byte.
863/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
864/// assert_eq!(s.is_ok(), false);
865/// # Ok::<(), kernel::error::Error>(())
866/// ```
867pub struct CString {
868    buf: KVec<u8>,
869}
870
871impl CString {
872    /// Creates an instance of [`CString`] from the given formatted arguments.
873    pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
874        // Calculate the size needed (formatted string plus `NUL` terminator).
875        let mut f = RawFormatter::new();
876        f.write_fmt(args)?;
877        f.write_str("\0")?;
878        let size = f.bytes_written();
879
880        // Allocate a vector with the required number of bytes, and write to it.
881        let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
882        // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
883        let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
884        f.write_fmt(args)?;
885        f.write_str("\0")?;
886
887        // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
888        // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
889        unsafe { buf.inc_len(f.bytes_written()) };
890
891        // Check that there are no `NUL` bytes before the end.
892        // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
893        // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
894        // so `f.bytes_written() - 1` doesn't underflow.
895        let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
896        if !ptr.is_null() {
897            return Err(EINVAL);
898        }
899
900        // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
901        // exist in the buffer.
902        Ok(Self { buf })
903    }
904}
905
906impl Deref for CString {
907    type Target = CStr;
908
909    fn deref(&self) -> &Self::Target {
910        // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
911        // other `NUL` bytes exist.
912        unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
913    }
914}
915
916impl DerefMut for CString {
917    fn deref_mut(&mut self) -> &mut Self::Target {
918        // SAFETY: A `CString` is always NUL-terminated and contains no other
919        // NUL bytes.
920        unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
921    }
922}
923
924impl<'a> TryFrom<&'a CStr> for CString {
925    type Error = AllocError;
926
927    fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
928        let mut buf = KVec::new();
929
930        buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?;
931
932        // INVARIANT: The `CStr` and `CString` types have the same invariants for
933        // the string data, and we copied it over without changes.
934        Ok(CString { buf })
935    }
936}
937
938impl fmt::Debug for CString {
939    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
940        fmt::Debug::fmt(&**self, f)
941    }
942}
943
944/// A convenience alias for [`core::format_args`].
945#[macro_export]
946macro_rules! fmt {
947    ($($f:tt)*) => ( core::format_args!($($f)*) )
948}