kernel/
error.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Kernel errors.
4//!
5//! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)
6
7use crate::{
8    alloc::{layout::LayoutError, AllocError},
9    str::CStr,
10};
11
12use core::fmt;
13use core::num::NonZeroI32;
14use core::num::TryFromIntError;
15use core::str::Utf8Error;
16
17/// Contains the C-compatible error codes.
18#[rustfmt::skip]
19pub mod code {
20    macro_rules! declare_err {
21        ($err:tt $(,)? $($doc:expr),+) => {
22            $(
23            #[doc = $doc]
24            )*
25            pub const $err: super::Error =
26                match super::Error::try_from_errno(-(crate::bindings::$err as i32)) {
27                    Some(err) => err,
28                    None => panic!("Invalid errno in `declare_err!`"),
29                };
30        };
31    }
32
33    declare_err!(EPERM, "Operation not permitted.");
34    declare_err!(ENOENT, "No such file or directory.");
35    declare_err!(ESRCH, "No such process.");
36    declare_err!(EINTR, "Interrupted system call.");
37    declare_err!(EIO, "I/O error.");
38    declare_err!(ENXIO, "No such device or address.");
39    declare_err!(E2BIG, "Argument list too long.");
40    declare_err!(ENOEXEC, "Exec format error.");
41    declare_err!(EBADF, "Bad file number.");
42    declare_err!(ECHILD, "No child processes.");
43    declare_err!(EAGAIN, "Try again.");
44    declare_err!(ENOMEM, "Out of memory.");
45    declare_err!(EACCES, "Permission denied.");
46    declare_err!(EFAULT, "Bad address.");
47    declare_err!(ENOTBLK, "Block device required.");
48    declare_err!(EBUSY, "Device or resource busy.");
49    declare_err!(EEXIST, "File exists.");
50    declare_err!(EXDEV, "Cross-device link.");
51    declare_err!(ENODEV, "No such device.");
52    declare_err!(ENOTDIR, "Not a directory.");
53    declare_err!(EISDIR, "Is a directory.");
54    declare_err!(EINVAL, "Invalid argument.");
55    declare_err!(ENFILE, "File table overflow.");
56    declare_err!(EMFILE, "Too many open files.");
57    declare_err!(ENOTTY, "Not a typewriter.");
58    declare_err!(ETXTBSY, "Text file busy.");
59    declare_err!(EFBIG, "File too large.");
60    declare_err!(ENOSPC, "No space left on device.");
61    declare_err!(ESPIPE, "Illegal seek.");
62    declare_err!(EROFS, "Read-only file system.");
63    declare_err!(EMLINK, "Too many links.");
64    declare_err!(EPIPE, "Broken pipe.");
65    declare_err!(EDOM, "Math argument out of domain of func.");
66    declare_err!(ERANGE, "Math result not representable.");
67    declare_err!(EOVERFLOW, "Value too large for defined data type.");
68    declare_err!(ETIMEDOUT, "Connection timed out.");
69    declare_err!(ERESTARTSYS, "Restart the system call.");
70    declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted.");
71    declare_err!(ERESTARTNOHAND, "Restart if no handler.");
72    declare_err!(ENOIOCTLCMD, "No ioctl command.");
73    declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall.");
74    declare_err!(EPROBE_DEFER, "Driver requests probe retry.");
75    declare_err!(EOPENSTALE, "Open found a stale dentry.");
76    declare_err!(ENOPARAM, "Parameter not supported.");
77    declare_err!(EBADHANDLE, "Illegal NFS file handle.");
78    declare_err!(ENOTSYNC, "Update synchronization mismatch.");
79    declare_err!(EBADCOOKIE, "Cookie is stale.");
80    declare_err!(ENOTSUPP, "Operation is not supported.");
81    declare_err!(ETOOSMALL, "Buffer or request is too small.");
82    declare_err!(ESERVERFAULT, "An untranslatable error occurred.");
83    declare_err!(EBADTYPE, "Type not supported by server.");
84    declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout.");
85    declare_err!(EIOCBQUEUED, "iocb queued, will get completion event.");
86    declare_err!(ERECALLCONFLICT, "Conflict with recalled state.");
87    declare_err!(ENOGRACE, "NFS file lock reclaim refused.");
88}
89
90/// Generic integer kernel error.
91///
92/// The kernel defines a set of integer generic error codes based on C and
93/// POSIX ones. These codes may have a more specific meaning in some contexts.
94///
95/// # Invariants
96///
97/// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`).
98#[derive(Clone, Copy, PartialEq, Eq)]
99pub struct Error(NonZeroI32);
100
101impl Error {
102    /// Creates an [`Error`] from a kernel error code.
103    ///
104    /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
105    /// be returned in such a case.
106    pub fn from_errno(errno: crate::ffi::c_int) -> Error {
107        if let Some(error) = Self::try_from_errno(errno) {
108            error
109        } else {
110            // TODO: Make it a `WARN_ONCE` once available.
111            crate::pr_warn!(
112                "attempted to create `Error` with out of range `errno`: {}\n",
113                errno
114            );
115            code::EINVAL
116        }
117    }
118
119    /// Creates an [`Error`] from a kernel error code.
120    ///
121    /// Returns [`None`] if `errno` is out-of-range.
122    const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> {
123        if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
124            return None;
125        }
126
127        // SAFETY: `errno` is checked above to be in a valid range.
128        Some(unsafe { Error::from_errno_unchecked(errno) })
129    }
130
131    /// Creates an [`Error`] from a kernel error code.
132    ///
133    /// # Safety
134    ///
135    /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
136    const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error {
137        // INVARIANT: The contract ensures the type invariant
138        // will hold.
139        // SAFETY: The caller guarantees `errno` is non-zero.
140        Error(unsafe { NonZeroI32::new_unchecked(errno) })
141    }
142
143    /// Returns the kernel error code.
144    pub fn to_errno(self) -> crate::ffi::c_int {
145        self.0.get()
146    }
147
148    #[cfg(CONFIG_BLOCK)]
149    pub(crate) fn to_blk_status(self) -> bindings::blk_status_t {
150        // SAFETY: `self.0` is a valid error due to its invariant.
151        unsafe { bindings::errno_to_blk_status(self.0.get()) }
152    }
153
154    /// Returns the error encoded as a pointer.
155    pub fn to_ptr<T>(self) -> *mut T {
156        // SAFETY: `self.0` is a valid error due to its invariant.
157        unsafe { bindings::ERR_PTR(self.0.get() as crate::ffi::c_long).cast() }
158    }
159
160    /// Returns a string representing the error, if one exists.
161    #[cfg(not(any(test, testlib)))]
162    pub fn name(&self) -> Option<&'static CStr> {
163        // SAFETY: Just an FFI call, there are no extra safety requirements.
164        let ptr = unsafe { bindings::errname(-self.0.get()) };
165        if ptr.is_null() {
166            None
167        } else {
168            // SAFETY: The string returned by `errname` is static and `NUL`-terminated.
169            Some(unsafe { CStr::from_char_ptr(ptr) })
170        }
171    }
172
173    /// Returns a string representing the error, if one exists.
174    ///
175    /// When `testlib` is configured, this always returns `None` to avoid the dependency on a
176    /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still
177    /// run in userspace.
178    #[cfg(any(test, testlib))]
179    pub fn name(&self) -> Option<&'static CStr> {
180        None
181    }
182}
183
184impl fmt::Debug for Error {
185    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
186        match self.name() {
187            // Print out number if no name can be found.
188            None => f.debug_tuple("Error").field(&-self.0).finish(),
189            Some(name) => f
190                .debug_tuple(
191                    // SAFETY: These strings are ASCII-only.
192                    unsafe { core::str::from_utf8_unchecked(name) },
193                )
194                .finish(),
195        }
196    }
197}
198
199impl From<AllocError> for Error {
200    fn from(_: AllocError) -> Error {
201        code::ENOMEM
202    }
203}
204
205impl From<TryFromIntError> for Error {
206    fn from(_: TryFromIntError) -> Error {
207        code::EINVAL
208    }
209}
210
211impl From<Utf8Error> for Error {
212    fn from(_: Utf8Error) -> Error {
213        code::EINVAL
214    }
215}
216
217impl From<LayoutError> for Error {
218    fn from(_: LayoutError) -> Error {
219        code::ENOMEM
220    }
221}
222
223impl From<core::fmt::Error> for Error {
224    fn from(_: core::fmt::Error) -> Error {
225        code::EINVAL
226    }
227}
228
229impl From<core::convert::Infallible> for Error {
230    fn from(e: core::convert::Infallible) -> Error {
231        match e {}
232    }
233}
234
235/// A [`Result`] with an [`Error`] error type.
236///
237/// To be used as the return type for functions that may fail.
238///
239/// # Error codes in C and Rust
240///
241/// In C, it is common that functions indicate success or failure through
242/// their return value; modifying or returning extra data through non-`const`
243/// pointer parameters. In particular, in the kernel, functions that may fail
244/// typically return an `int` that represents a generic error code. We model
245/// those as [`Error`].
246///
247/// In Rust, it is idiomatic to model functions that may fail as returning
248/// a [`Result`]. Since in the kernel many functions return an error code,
249/// [`Result`] is a type alias for a [`core::result::Result`] that uses
250/// [`Error`] as its error type.
251///
252/// Note that even if a function does not return anything when it succeeds,
253/// it should still be modeled as returning a [`Result`] rather than
254/// just an [`Error`].
255///
256/// Calling a function that returns [`Result`] forces the caller to handle
257/// the returned [`Result`].
258///
259/// This can be done "manually" by using [`match`]. Using [`match`] to decode
260/// the [`Result`] is similar to C where all the return value decoding and the
261/// error handling is done explicitly by writing handling code for each
262/// error to cover. Using [`match`] the error and success handling can be
263/// implemented in all detail as required. For example (inspired by
264/// [`samples/rust/rust_minimal.rs`]):
265///
266/// ```
267/// # #[allow(clippy::single_match)]
268/// fn example() -> Result {
269///     let mut numbers = KVec::new();
270///
271///     match numbers.push(72, GFP_KERNEL) {
272///         Err(e) => {
273///             pr_err!("Error pushing 72: {e:?}");
274///             return Err(e.into());
275///         }
276///         // Do nothing, continue.
277///         Ok(()) => (),
278///     }
279///
280///     match numbers.push(108, GFP_KERNEL) {
281///         Err(e) => {
282///             pr_err!("Error pushing 108: {e:?}");
283///             return Err(e.into());
284///         }
285///         // Do nothing, continue.
286///         Ok(()) => (),
287///     }
288///
289///     match numbers.push(200, GFP_KERNEL) {
290///         Err(e) => {
291///             pr_err!("Error pushing 200: {e:?}");
292///             return Err(e.into());
293///         }
294///         // Do nothing, continue.
295///         Ok(()) => (),
296///     }
297///
298///     Ok(())
299/// }
300/// # example()?;
301/// # Ok::<(), Error>(())
302/// ```
303///
304/// An alternative to be more concise is the [`if let`] syntax:
305///
306/// ```
307/// fn example() -> Result {
308///     let mut numbers = KVec::new();
309///
310///     if let Err(e) = numbers.push(72, GFP_KERNEL) {
311///         pr_err!("Error pushing 72: {e:?}");
312///         return Err(e.into());
313///     }
314///
315///     if let Err(e) = numbers.push(108, GFP_KERNEL) {
316///         pr_err!("Error pushing 108: {e:?}");
317///         return Err(e.into());
318///     }
319///
320///     if let Err(e) = numbers.push(200, GFP_KERNEL) {
321///         pr_err!("Error pushing 200: {e:?}");
322///         return Err(e.into());
323///     }
324///
325///     Ok(())
326/// }
327/// # example()?;
328/// # Ok::<(), Error>(())
329/// ```
330///
331/// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can
332/// be used to handle the [`Result`]. Using the [`?`] operator is often
333/// the best choice to handle [`Result`] in a non-verbose way as done in
334/// [`samples/rust/rust_minimal.rs`]:
335///
336/// ```
337/// fn example() -> Result {
338///     let mut numbers = KVec::new();
339///
340///     numbers.push(72, GFP_KERNEL)?;
341///     numbers.push(108, GFP_KERNEL)?;
342///     numbers.push(200, GFP_KERNEL)?;
343///
344///     Ok(())
345/// }
346/// # example()?;
347/// # Ok::<(), Error>(())
348/// ```
349///
350/// Another possibility is to call [`unwrap()`](Result::unwrap) or
351/// [`expect()`](Result::expect). However, use of these functions is
352/// *heavily discouraged* in the kernel because they trigger a Rust
353/// [`panic!`] if an error happens, which may destabilize the system or
354/// entirely break it as a result -- just like the C [`BUG()`] macro.
355/// Please see the documentation for the C macro [`BUG()`] for guidance
356/// on when to use these functions.
357///
358/// Alternatively, depending on the use case, using [`unwrap_or()`],
359/// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`]
360/// might be an option, as well.
361///
362/// For even more details, please see the [Rust documentation].
363///
364/// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html
365/// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs
366/// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions
367/// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator
368/// [`unwrap()`]: Result::unwrap
369/// [`expect()`]: Result::expect
370/// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on
371/// [`unwrap_or()`]: Result::unwrap_or
372/// [`unwrap_or_else()`]: Result::unwrap_or_else
373/// [`unwrap_or_default()`]: Result::unwrap_or_default
374/// [`unwrap_unchecked()`]: Result::unwrap_unchecked
375/// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html
376pub type Result<T = (), E = Error> = core::result::Result<T, E>;
377
378/// Converts an integer as returned by a C kernel function to an error if it's negative, and
379/// `Ok(())` otherwise.
380pub fn to_result(err: crate::ffi::c_int) -> Result {
381    if err < 0 {
382        Err(Error::from_errno(err))
383    } else {
384        Ok(())
385    }
386}
387
388/// Transform a kernel "error pointer" to a normal pointer.
389///
390/// Some kernel C API functions return an "error pointer" which optionally
391/// embeds an `errno`. Callers are supposed to check the returned pointer
392/// for errors. This function performs the check and converts the "error pointer"
393/// to a normal pointer in an idiomatic fashion.
394///
395/// # Examples
396///
397/// ```ignore
398/// # use kernel::from_err_ptr;
399/// # use kernel::bindings;
400/// fn devm_platform_ioremap_resource(
401///     pdev: &mut PlatformDevice,
402///     index: u32,
403/// ) -> Result<*mut kernel::ffi::c_void> {
404///     // SAFETY: `pdev` points to a valid platform device. There are no safety requirements
405///     // on `index`.
406///     from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) })
407/// }
408/// ```
409pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> {
410    // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid.
411    let const_ptr: *const crate::ffi::c_void = ptr.cast();
412    // SAFETY: The FFI function does not deref the pointer.
413    if unsafe { bindings::IS_ERR(const_ptr) } {
414        // SAFETY: The FFI function does not deref the pointer.
415        let err = unsafe { bindings::PTR_ERR(const_ptr) };
416
417        #[allow(clippy::unnecessary_cast)]
418        // CAST: If `IS_ERR()` returns `true`,
419        // then `PTR_ERR()` is guaranteed to return a
420        // negative value greater-or-equal to `-bindings::MAX_ERRNO`,
421        // which always fits in an `i16`, as per the invariant above.
422        // And an `i16` always fits in an `i32`. So casting `err` to
423        // an `i32` can never overflow, and is always valid.
424        //
425        // SAFETY: `IS_ERR()` ensures `err` is a
426        // negative value greater-or-equal to `-bindings::MAX_ERRNO`.
427        return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) });
428    }
429    Ok(ptr)
430}
431
432/// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to
433/// a C integer result.
434///
435/// This is useful when calling Rust functions that return [`crate::error::Result<T>`]
436/// from inside `extern "C"` functions that need to return an integer error result.
437///
438/// `T` should be convertible from an `i16` via `From<i16>`.
439///
440/// # Examples
441///
442/// ```ignore
443/// # use kernel::from_result;
444/// # use kernel::bindings;
445/// unsafe extern "C" fn probe_callback(
446///     pdev: *mut bindings::platform_device,
447/// ) -> kernel::ffi::c_int {
448///     from_result(|| {
449///         let ptr = devm_alloc(pdev)?;
450///         bindings::platform_set_drvdata(pdev, ptr);
451///         Ok(0)
452///     })
453/// }
454/// ```
455pub fn from_result<T, F>(f: F) -> T
456where
457    T: From<i16>,
458    F: FnOnce() -> Result<T>,
459{
460    match f() {
461        Ok(v) => v,
462        // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`,
463        // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above,
464        // therefore a negative `errno` always fits in an `i16` and will not overflow.
465        Err(e) => T::from(e.to_errno() as i16),
466    }
467}
468
469/// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait.
470pub const VTABLE_DEFAULT_ERROR: &str =
471    "This function must not be called, see the #[vtable] documentation.";