kernel/alloc/kvec.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Implementation of [`Vec`].
4
5use super::{
6 allocator::{KVmalloc, Kmalloc, Vmalloc},
7 layout::ArrayLayout,
8 AllocError, Allocator, Box, Flags,
9};
10use core::{
11 fmt,
12 marker::PhantomData,
13 mem::{ManuallyDrop, MaybeUninit},
14 ops::Deref,
15 ops::DerefMut,
16 ops::Index,
17 ops::IndexMut,
18 ptr,
19 ptr::NonNull,
20 slice,
21 slice::SliceIndex,
22};
23
24/// Create a [`KVec`] containing the arguments.
25///
26/// New memory is allocated with `GFP_KERNEL`.
27///
28/// # Examples
29///
30/// ```
31/// let mut v = kernel::kvec![];
32/// v.push(1, GFP_KERNEL)?;
33/// assert_eq!(v, [1]);
34///
35/// let mut v = kernel::kvec![1; 3]?;
36/// v.push(4, GFP_KERNEL)?;
37/// assert_eq!(v, [1, 1, 1, 4]);
38///
39/// let mut v = kernel::kvec![1, 2, 3]?;
40/// v.push(4, GFP_KERNEL)?;
41/// assert_eq!(v, [1, 2, 3, 4]);
42///
43/// # Ok::<(), Error>(())
44/// ```
45#[macro_export]
46macro_rules! kvec {
47 () => (
48 $crate::alloc::KVec::new()
49 );
50 ($elem:expr; $n:expr) => (
51 $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
52 );
53 ($($x:expr),+ $(,)?) => (
54 match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
55 Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
56 Err(e) => Err(e),
57 }
58 );
59}
60
61/// The kernel's [`Vec`] type.
62///
63/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
64/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
65///
66/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
67/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
68///
69/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
70///
71/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
72/// capacity of the vector (the number of elements that currently fit into the vector), its length
73/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
74/// to allocate (and free) the backing buffer.
75///
76/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
77/// and manually modified.
78///
79/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
80/// are added to the vector.
81///
82/// # Invariants
83///
84/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
85/// zero-sized types, is a dangling, well aligned pointer.
86///
87/// - `self.len` always represents the exact number of elements stored in the vector.
88///
89/// - `self.layout` represents the absolute number of elements that can be stored within the vector
90/// without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
91/// backing buffer to be larger than `layout`.
92///
93/// - `self.len()` is always less than or equal to `self.capacity()`.
94///
95/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
96/// was allocated with (and must be freed with).
97pub struct Vec<T, A: Allocator> {
98 ptr: NonNull<T>,
99 /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
100 ///
101 /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
102 /// elements we can still store without reallocating.
103 layout: ArrayLayout<T>,
104 len: usize,
105 _p: PhantomData<A>,
106}
107
108/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
109///
110/// # Examples
111///
112/// ```
113/// let mut v = KVec::new();
114/// v.push(1, GFP_KERNEL)?;
115/// assert_eq!(&v, &[1]);
116///
117/// # Ok::<(), Error>(())
118/// ```
119pub type KVec<T> = Vec<T, Kmalloc>;
120
121/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
122///
123/// # Examples
124///
125/// ```
126/// let mut v = VVec::new();
127/// v.push(1, GFP_KERNEL)?;
128/// assert_eq!(&v, &[1]);
129///
130/// # Ok::<(), Error>(())
131/// ```
132pub type VVec<T> = Vec<T, Vmalloc>;
133
134/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
135///
136/// # Examples
137///
138/// ```
139/// let mut v = KVVec::new();
140/// v.push(1, GFP_KERNEL)?;
141/// assert_eq!(&v, &[1]);
142///
143/// # Ok::<(), Error>(())
144/// ```
145pub type KVVec<T> = Vec<T, KVmalloc>;
146
147// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
148unsafe impl<T, A> Send for Vec<T, A>
149where
150 T: Send,
151 A: Allocator,
152{
153}
154
155// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
156unsafe impl<T, A> Sync for Vec<T, A>
157where
158 T: Sync,
159 A: Allocator,
160{
161}
162
163impl<T, A> Vec<T, A>
164where
165 A: Allocator,
166{
167 #[inline]
168 const fn is_zst() -> bool {
169 core::mem::size_of::<T>() == 0
170 }
171
172 /// Returns the number of elements that can be stored within the vector without allocating
173 /// additional memory.
174 pub fn capacity(&self) -> usize {
175 if const { Self::is_zst() } {
176 usize::MAX
177 } else {
178 self.layout.len()
179 }
180 }
181
182 /// Returns the number of elements stored within the vector.
183 #[inline]
184 pub fn len(&self) -> usize {
185 self.len
186 }
187
188 /// Increments `self.len` by `additional`.
189 ///
190 /// # Safety
191 ///
192 /// - `additional` must be less than or equal to `self.capacity - self.len`.
193 /// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
194 #[inline]
195 pub unsafe fn inc_len(&mut self, additional: usize) {
196 // Guaranteed by the type invariant to never underflow.
197 debug_assert!(additional <= self.capacity() - self.len());
198 // INVARIANT: By the safety requirements of this method this represents the exact number of
199 // elements stored within `self`.
200 self.len += additional;
201 }
202
203 /// Decreases `self.len` by `count`.
204 ///
205 /// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
206 /// responsibility to drop these elements if necessary.
207 ///
208 /// # Safety
209 ///
210 /// - `count` must be less than or equal to `self.len`.
211 unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
212 debug_assert!(count <= self.len());
213 // INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
214 // self.len)`, hence the updated value of `set.len` represents the exact number of elements
215 // stored within `self`.
216 self.len -= count;
217 // SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
218 // elements of type `T`.
219 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
220 }
221
222 /// Returns a slice of the entire vector.
223 #[inline]
224 pub fn as_slice(&self) -> &[T] {
225 self
226 }
227
228 /// Returns a mutable slice of the entire vector.
229 #[inline]
230 pub fn as_mut_slice(&mut self) -> &mut [T] {
231 self
232 }
233
234 /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
235 /// dangling raw pointer.
236 #[inline]
237 pub fn as_mut_ptr(&mut self) -> *mut T {
238 self.ptr.as_ptr()
239 }
240
241 /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
242 /// pointer.
243 #[inline]
244 pub fn as_ptr(&self) -> *const T {
245 self.ptr.as_ptr()
246 }
247
248 /// Returns `true` if the vector contains no elements, `false` otherwise.
249 ///
250 /// # Examples
251 ///
252 /// ```
253 /// let mut v = KVec::new();
254 /// assert!(v.is_empty());
255 ///
256 /// v.push(1, GFP_KERNEL);
257 /// assert!(!v.is_empty());
258 /// ```
259 #[inline]
260 pub fn is_empty(&self) -> bool {
261 self.len() == 0
262 }
263
264 /// Creates a new, empty `Vec<T, A>`.
265 ///
266 /// This method does not allocate by itself.
267 #[inline]
268 pub const fn new() -> Self {
269 // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
270 // - `ptr` is a properly aligned dangling pointer for type `T`,
271 // - `layout` is an empty `ArrayLayout` (zero capacity)
272 // - `len` is zero, since no elements can be or have been stored,
273 // - `A` is always valid.
274 Self {
275 ptr: NonNull::dangling(),
276 layout: ArrayLayout::empty(),
277 len: 0,
278 _p: PhantomData::<A>,
279 }
280 }
281
282 /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
283 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
284 // SAFETY:
285 // - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
286 // resulting pointer is guaranteed to be part of the same allocated object.
287 // - `self.len` can not overflow `isize`.
288 let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
289
290 // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
291 // and valid, but uninitialized.
292 unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
293 }
294
295 /// Appends an element to the back of the [`Vec`] instance.
296 ///
297 /// # Examples
298 ///
299 /// ```
300 /// let mut v = KVec::new();
301 /// v.push(1, GFP_KERNEL)?;
302 /// assert_eq!(&v, &[1]);
303 ///
304 /// v.push(2, GFP_KERNEL)?;
305 /// assert_eq!(&v, &[1, 2]);
306 /// # Ok::<(), Error>(())
307 /// ```
308 pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
309 self.reserve(1, flags)?;
310
311 let spare = self.spare_capacity_mut();
312
313 // SAFETY: The call to `reserve` was successful so the spare capacity is at least 1.
314 unsafe { spare.get_unchecked_mut(0) }.write(v);
315
316 // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
317 // by 1. We also know that the new length is <= capacity because of the previous call to
318 // `reserve` above.
319 unsafe { self.inc_len(1) };
320 Ok(())
321 }
322
323 /// Creates a new [`Vec`] instance with at least the given capacity.
324 ///
325 /// # Examples
326 ///
327 /// ```
328 /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
329 ///
330 /// assert!(v.capacity() >= 20);
331 /// # Ok::<(), Error>(())
332 /// ```
333 pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
334 let mut v = Vec::new();
335
336 v.reserve(capacity, flags)?;
337
338 Ok(v)
339 }
340
341 /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
342 ///
343 /// # Examples
344 ///
345 /// ```
346 /// let mut v = kernel::kvec![1, 2, 3]?;
347 /// v.reserve(1, GFP_KERNEL)?;
348 ///
349 /// let (mut ptr, mut len, cap) = v.into_raw_parts();
350 ///
351 /// // SAFETY: We've just reserved memory for another element.
352 /// unsafe { ptr.add(len).write(4) };
353 /// len += 1;
354 ///
355 /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
356 /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
357 /// // from the exact same raw parts.
358 /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
359 ///
360 /// assert_eq!(v, [1, 2, 3, 4]);
361 ///
362 /// # Ok::<(), Error>(())
363 /// ```
364 ///
365 /// # Safety
366 ///
367 /// If `T` is a ZST:
368 ///
369 /// - `ptr` must be a dangling, well aligned pointer.
370 ///
371 /// Otherwise:
372 ///
373 /// - `ptr` must have been allocated with the allocator `A`.
374 /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
375 /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
376 /// - The allocated size in bytes must not be larger than `isize::MAX`.
377 /// - `length` must be less than or equal to `capacity`.
378 /// - The first `length` elements must be initialized values of type `T`.
379 ///
380 /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
381 /// `cap` and `len`.
382 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
383 let layout = if Self::is_zst() {
384 ArrayLayout::empty()
385 } else {
386 // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
387 // smaller than `isize::MAX`.
388 unsafe { ArrayLayout::new_unchecked(capacity) }
389 };
390
391 // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
392 // covered by the safety requirements of this function.
393 Self {
394 // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
395 // memory allocation, allocated with `A`.
396 ptr: unsafe { NonNull::new_unchecked(ptr) },
397 layout,
398 len: length,
399 _p: PhantomData::<A>,
400 }
401 }
402
403 /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
404 ///
405 /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
406 /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
407 /// elements and free the allocation, if any.
408 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
409 let mut me = ManuallyDrop::new(self);
410 let len = me.len();
411 let capacity = me.capacity();
412 let ptr = me.as_mut_ptr();
413 (ptr, len, capacity)
414 }
415
416 /// Ensures that the capacity exceeds the length by at least `additional` elements.
417 ///
418 /// # Examples
419 ///
420 /// ```
421 /// let mut v = KVec::new();
422 /// v.push(1, GFP_KERNEL)?;
423 ///
424 /// v.reserve(10, GFP_KERNEL)?;
425 /// let cap = v.capacity();
426 /// assert!(cap >= 10);
427 ///
428 /// v.reserve(10, GFP_KERNEL)?;
429 /// let new_cap = v.capacity();
430 /// assert_eq!(new_cap, cap);
431 ///
432 /// # Ok::<(), Error>(())
433 /// ```
434 pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
435 let len = self.len();
436 let cap = self.capacity();
437
438 if cap - len >= additional {
439 return Ok(());
440 }
441
442 if Self::is_zst() {
443 // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
444 return Err(AllocError);
445 }
446
447 // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
448 // multiplication by two won't overflow.
449 let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
450 let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
451
452 // SAFETY:
453 // - `ptr` is valid because it's either `None` or comes from a previous call to
454 // `A::realloc`.
455 // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
456 let ptr = unsafe {
457 A::realloc(
458 Some(self.ptr.cast()),
459 layout.into(),
460 self.layout.into(),
461 flags,
462 )?
463 };
464
465 // INVARIANT:
466 // - `layout` is some `ArrayLayout::<T>`,
467 // - `ptr` has been created by `A::realloc` from `layout`.
468 self.ptr = ptr.cast();
469 self.layout = layout;
470
471 Ok(())
472 }
473
474 /// Shortens the vector, setting the length to `len` and drops the removed values.
475 /// If `len` is greater than or equal to the current length, this does nothing.
476 ///
477 /// This has no effect on the capacity and will not allocate.
478 ///
479 /// # Examples
480 ///
481 /// ```
482 /// let mut v = kernel::kvec![1, 2, 3]?;
483 /// v.truncate(1);
484 /// assert_eq!(v.len(), 1);
485 /// assert_eq!(&v, &[1]);
486 ///
487 /// # Ok::<(), Error>(())
488 /// ```
489 pub fn truncate(&mut self, len: usize) {
490 if let Some(count) = self.len().checked_sub(len) {
491 // SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
492 // equal to `self.len()`.
493 let ptr: *mut [T] = unsafe { self.dec_len(count) };
494
495 // SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
496 // valid elements whose ownership has been transferred to the caller.
497 unsafe { ptr::drop_in_place(ptr) };
498 }
499 }
500}
501
502impl<T: Clone, A: Allocator> Vec<T, A> {
503 /// Extend the vector by `n` clones of `value`.
504 pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
505 if n == 0 {
506 return Ok(());
507 }
508
509 self.reserve(n, flags)?;
510
511 let spare = self.spare_capacity_mut();
512
513 for item in spare.iter_mut().take(n - 1) {
514 item.write(value.clone());
515 }
516
517 // We can write the last element directly without cloning needlessly.
518 spare[n - 1].write(value);
519
520 // SAFETY:
521 // - `self.len() + n < self.capacity()` due to the call to reserve above,
522 // - the loop and the line above initialized the next `n` elements.
523 unsafe { self.inc_len(n) };
524
525 Ok(())
526 }
527
528 /// Pushes clones of the elements of slice into the [`Vec`] instance.
529 ///
530 /// # Examples
531 ///
532 /// ```
533 /// let mut v = KVec::new();
534 /// v.push(1, GFP_KERNEL)?;
535 ///
536 /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
537 /// assert_eq!(&v, &[1, 20, 30, 40]);
538 ///
539 /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
540 /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
541 /// # Ok::<(), Error>(())
542 /// ```
543 pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
544 self.reserve(other.len(), flags)?;
545 for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
546 slot.write(item.clone());
547 }
548
549 // SAFETY:
550 // - `other.len()` spare entries have just been initialized, so it is safe to increase
551 // the length by the same number.
552 // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
553 // call.
554 unsafe { self.inc_len(other.len()) };
555 Ok(())
556 }
557
558 /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
559 pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
560 let mut v = Self::with_capacity(n, flags)?;
561
562 v.extend_with(n, value, flags)?;
563
564 Ok(v)
565 }
566
567 /// Resizes the [`Vec`] so that `len` is equal to `new_len`.
568 ///
569 /// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
570 /// If `new_len` is larger, each new slot is filled with clones of `value`.
571 ///
572 /// # Examples
573 ///
574 /// ```
575 /// let mut v = kernel::kvec![1, 2, 3]?;
576 /// v.resize(1, 42, GFP_KERNEL)?;
577 /// assert_eq!(&v, &[1]);
578 ///
579 /// v.resize(3, 42, GFP_KERNEL)?;
580 /// assert_eq!(&v, &[1, 42, 42]);
581 ///
582 /// # Ok::<(), Error>(())
583 /// ```
584 pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
585 match new_len.checked_sub(self.len()) {
586 Some(n) => self.extend_with(n, value, flags),
587 None => {
588 self.truncate(new_len);
589 Ok(())
590 }
591 }
592 }
593}
594
595impl<T, A> Drop for Vec<T, A>
596where
597 A: Allocator,
598{
599 fn drop(&mut self) {
600 // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
601 unsafe {
602 ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
603 self.as_mut_ptr(),
604 self.len,
605 ))
606 };
607
608 // SAFETY:
609 // - `self.ptr` was previously allocated with `A`.
610 // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
611 unsafe { A::free(self.ptr.cast(), self.layout.into()) };
612 }
613}
614
615impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
616where
617 A: Allocator,
618{
619 fn from(b: Box<[T; N], A>) -> Vec<T, A> {
620 let len = b.len();
621 let ptr = Box::into_raw(b);
622
623 // SAFETY:
624 // - `b` has been allocated with `A`,
625 // - `ptr` fulfills the alignment requirements for `T`,
626 // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
627 // - all elements within `b` are initialized values of `T`,
628 // - `len` does not exceed `isize::MAX`.
629 unsafe { Vec::from_raw_parts(ptr as _, len, len) }
630 }
631}
632
633impl<T> Default for KVec<T> {
634 #[inline]
635 fn default() -> Self {
636 Self::new()
637 }
638}
639
640impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
641 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
642 fmt::Debug::fmt(&**self, f)
643 }
644}
645
646impl<T, A> Deref for Vec<T, A>
647where
648 A: Allocator,
649{
650 type Target = [T];
651
652 #[inline]
653 fn deref(&self) -> &[T] {
654 // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
655 // initialized elements of type `T`.
656 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
657 }
658}
659
660impl<T, A> DerefMut for Vec<T, A>
661where
662 A: Allocator,
663{
664 #[inline]
665 fn deref_mut(&mut self) -> &mut [T] {
666 // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
667 // initialized elements of type `T`.
668 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
669 }
670}
671
672impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
673
674impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
675where
676 A: Allocator,
677{
678 type Output = I::Output;
679
680 #[inline]
681 fn index(&self, index: I) -> &Self::Output {
682 Index::index(&**self, index)
683 }
684}
685
686impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
687where
688 A: Allocator,
689{
690 #[inline]
691 fn index_mut(&mut self, index: I) -> &mut Self::Output {
692 IndexMut::index_mut(&mut **self, index)
693 }
694}
695
696macro_rules! impl_slice_eq {
697 ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
698 $(
699 impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
700 where
701 T: PartialEq<U>,
702 {
703 #[inline]
704 fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
705 }
706 )*
707 }
708}
709
710impl_slice_eq! {
711 [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
712 [A: Allocator] Vec<T, A>, &[U],
713 [A: Allocator] Vec<T, A>, &mut [U],
714 [A: Allocator] &[T], Vec<U, A>,
715 [A: Allocator] &mut [T], Vec<U, A>,
716 [A: Allocator] Vec<T, A>, [U],
717 [A: Allocator] [T], Vec<U, A>,
718 [A: Allocator, const N: usize] Vec<T, A>, [U; N],
719 [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
720}
721
722impl<'a, T, A> IntoIterator for &'a Vec<T, A>
723where
724 A: Allocator,
725{
726 type Item = &'a T;
727 type IntoIter = slice::Iter<'a, T>;
728
729 fn into_iter(self) -> Self::IntoIter {
730 self.iter()
731 }
732}
733
734impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
735where
736 A: Allocator,
737{
738 type Item = &'a mut T;
739 type IntoIter = slice::IterMut<'a, T>;
740
741 fn into_iter(self) -> Self::IntoIter {
742 self.iter_mut()
743 }
744}
745
746/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
747///
748/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
749/// [`IntoIterator`] trait).
750///
751/// # Examples
752///
753/// ```
754/// let v = kernel::kvec![0, 1, 2]?;
755/// let iter = v.into_iter();
756///
757/// # Ok::<(), Error>(())
758/// ```
759pub struct IntoIter<T, A: Allocator> {
760 ptr: *mut T,
761 buf: NonNull<T>,
762 len: usize,
763 layout: ArrayLayout<T>,
764 _p: PhantomData<A>,
765}
766
767impl<T, A> IntoIter<T, A>
768where
769 A: Allocator,
770{
771 fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
772 let me = ManuallyDrop::new(self);
773 let ptr = me.ptr;
774 let buf = me.buf;
775 let len = me.len;
776 let cap = me.layout.len();
777 (ptr, buf, len, cap)
778 }
779
780 /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
781 ///
782 /// # Examples
783 ///
784 /// ```
785 /// let v = kernel::kvec![1, 2, 3]?;
786 /// let mut it = v.into_iter();
787 ///
788 /// assert_eq!(it.next(), Some(1));
789 ///
790 /// let v = it.collect(GFP_KERNEL);
791 /// assert_eq!(v, [2, 3]);
792 ///
793 /// # Ok::<(), Error>(())
794 /// ```
795 ///
796 /// # Implementation details
797 ///
798 /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
799 /// in the kernel, namely:
800 ///
801 /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
802 /// case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
803 /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
804 /// doesn't require this type to be `'static`.
805 /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
806 /// we can't properly handle allocation failures.
807 /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
808 /// flags.
809 ///
810 /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
811 /// `Vec` again.
812 ///
813 /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
814 /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
815 pub fn collect(self, flags: Flags) -> Vec<T, A> {
816 let old_layout = self.layout;
817 let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
818 let has_advanced = ptr != buf.as_ptr();
819
820 if has_advanced {
821 // Copy the contents we have advanced to at the beginning of the buffer.
822 //
823 // SAFETY:
824 // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
825 // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
826 // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
827 // each other,
828 // - both `ptr` and `buf.ptr()` are properly aligned.
829 unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
830 ptr = buf.as_ptr();
831
832 // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
833 // invariant.
834 let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
835
836 // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
837 // the type invariant to be smaller than `cap`. Depending on `realloc` this operation
838 // may shrink the buffer or leave it as it is.
839 ptr = match unsafe {
840 A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
841 } {
842 // If we fail to shrink, which likely can't even happen, continue with the existing
843 // buffer.
844 Err(_) => ptr,
845 Ok(ptr) => {
846 cap = len;
847 ptr.as_ptr().cast()
848 }
849 };
850 }
851
852 // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
853 // the beginning of the buffer and `len` has been adjusted accordingly.
854 //
855 // - `ptr` is guaranteed to point to the start of the backing buffer.
856 // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
857 // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
858 // `Vec`.
859 unsafe { Vec::from_raw_parts(ptr, len, cap) }
860 }
861}
862
863impl<T, A> Iterator for IntoIter<T, A>
864where
865 A: Allocator,
866{
867 type Item = T;
868
869 /// # Examples
870 ///
871 /// ```
872 /// let v = kernel::kvec![1, 2, 3]?;
873 /// let mut it = v.into_iter();
874 ///
875 /// assert_eq!(it.next(), Some(1));
876 /// assert_eq!(it.next(), Some(2));
877 /// assert_eq!(it.next(), Some(3));
878 /// assert_eq!(it.next(), None);
879 ///
880 /// # Ok::<(), Error>(())
881 /// ```
882 fn next(&mut self) -> Option<T> {
883 if self.len == 0 {
884 return None;
885 }
886
887 let current = self.ptr;
888
889 // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
890 // by one guarantees that.
891 unsafe { self.ptr = self.ptr.add(1) };
892
893 self.len -= 1;
894
895 // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
896 Some(unsafe { current.read() })
897 }
898
899 /// # Examples
900 ///
901 /// ```
902 /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
903 /// let mut iter = v.into_iter();
904 /// let size = iter.size_hint().0;
905 ///
906 /// iter.next();
907 /// assert_eq!(iter.size_hint().0, size - 1);
908 ///
909 /// iter.next();
910 /// assert_eq!(iter.size_hint().0, size - 2);
911 ///
912 /// iter.next();
913 /// assert_eq!(iter.size_hint().0, size - 3);
914 ///
915 /// # Ok::<(), Error>(())
916 /// ```
917 fn size_hint(&self) -> (usize, Option<usize>) {
918 (self.len, Some(self.len))
919 }
920}
921
922impl<T, A> Drop for IntoIter<T, A>
923where
924 A: Allocator,
925{
926 fn drop(&mut self) {
927 // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
928 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
929
930 // SAFETY:
931 // - `self.buf` was previously allocated with `A`.
932 // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
933 unsafe { A::free(self.buf.cast(), self.layout.into()) };
934 }
935}
936
937impl<T, A> IntoIterator for Vec<T, A>
938where
939 A: Allocator,
940{
941 type Item = T;
942 type IntoIter = IntoIter<T, A>;
943
944 /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
945 /// vector (from start to end).
946 ///
947 /// # Examples
948 ///
949 /// ```
950 /// let v = kernel::kvec![1, 2]?;
951 /// let mut v_iter = v.into_iter();
952 ///
953 /// let first_element: Option<u32> = v_iter.next();
954 ///
955 /// assert_eq!(first_element, Some(1));
956 /// assert_eq!(v_iter.next(), Some(2));
957 /// assert_eq!(v_iter.next(), None);
958 ///
959 /// # Ok::<(), Error>(())
960 /// ```
961 ///
962 /// ```
963 /// let v = kernel::kvec![];
964 /// let mut v_iter = v.into_iter();
965 ///
966 /// let first_element: Option<u32> = v_iter.next();
967 ///
968 /// assert_eq!(first_element, None);
969 ///
970 /// # Ok::<(), Error>(())
971 /// ```
972 #[inline]
973 fn into_iter(self) -> Self::IntoIter {
974 let buf = self.ptr;
975 let layout = self.layout;
976 let (ptr, len, _) = self.into_raw_parts();
977
978 IntoIter {
979 ptr,
980 buf,
981 len,
982 layout,
983 _p: PhantomData::<A>,
984 }
985 }
986}