kernel/alloc/kbox.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Implementation of [`Box`].
4
5#[allow(unused_imports)] // Used in doc comments.
6use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
7use super::{AllocError, Allocator, Flags};
8use core::alloc::Layout;
9use core::fmt;
10use core::marker::PhantomData;
11use core::mem::ManuallyDrop;
12use core::mem::MaybeUninit;
13use core::ops::{Deref, DerefMut};
14use core::pin::Pin;
15use core::ptr::NonNull;
16use core::result::Result;
17
18use crate::init::InPlaceInit;
19use crate::types::ForeignOwnable;
20use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption};
21
22/// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`.
23///
24/// This is the kernel's version of the Rust stdlib's `Box`. There are several differences,
25/// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not
26/// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`]
27/// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions
28/// that may allocate memory are fallible.
29///
30/// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`].
31/// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]).
32///
33/// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed.
34///
35/// # Examples
36///
37/// ```
38/// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?;
39///
40/// assert_eq!(*b, 24_u64);
41/// # Ok::<(), Error>(())
42/// ```
43///
44/// ```
45/// # use kernel::bindings;
46/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
47/// struct Huge([u8; SIZE]);
48///
49/// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err());
50/// ```
51///
52/// ```
53/// # use kernel::bindings;
54/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
55/// struct Huge([u8; SIZE]);
56///
57/// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok());
58/// ```
59///
60/// [`Box`]es can also be used to store trait objects by coercing their type:
61///
62/// ```
63/// trait FooTrait {}
64///
65/// struct FooStruct;
66/// impl FooTrait for FooStruct {}
67///
68/// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>;
69/// # Ok::<(), Error>(())
70/// ```
71///
72/// # Invariants
73///
74/// `self.0` is always properly aligned and either points to memory allocated with `A` or, for
75/// zero-sized types, is a dangling, well aligned pointer.
76#[repr(transparent)]
77#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
78pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>(
79 NonNull<T>,
80 PhantomData<A>,
81);
82
83// This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the
84// dynamically-sized type (DST) `U`.
85#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
86impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A>
87where
88 T: ?Sized + core::marker::Unsize<U>,
89 U: ?Sized,
90 A: Allocator,
91{
92}
93
94// This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U,
95// A>`.
96#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
97impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A>
98where
99 T: ?Sized + core::marker::Unsize<U>,
100 U: ?Sized,
101 A: Allocator,
102{
103}
104
105/// Type alias for [`Box`] with a [`Kmalloc`] allocator.
106///
107/// # Examples
108///
109/// ```
110/// let b = KBox::new(24_u64, GFP_KERNEL)?;
111///
112/// assert_eq!(*b, 24_u64);
113/// # Ok::<(), Error>(())
114/// ```
115pub type KBox<T> = Box<T, super::allocator::Kmalloc>;
116
117/// Type alias for [`Box`] with a [`Vmalloc`] allocator.
118///
119/// # Examples
120///
121/// ```
122/// let b = VBox::new(24_u64, GFP_KERNEL)?;
123///
124/// assert_eq!(*b, 24_u64);
125/// # Ok::<(), Error>(())
126/// ```
127pub type VBox<T> = Box<T, super::allocator::Vmalloc>;
128
129/// Type alias for [`Box`] with a [`KVmalloc`] allocator.
130///
131/// # Examples
132///
133/// ```
134/// let b = KVBox::new(24_u64, GFP_KERNEL)?;
135///
136/// assert_eq!(*b, 24_u64);
137/// # Ok::<(), Error>(())
138/// ```
139pub type KVBox<T> = Box<T, super::allocator::KVmalloc>;
140
141// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
142// https://doc.rust-lang.org/stable/std/option/index.html#representation).
143unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {}
144
145// SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`.
146unsafe impl<T, A> Send for Box<T, A>
147where
148 T: Send + ?Sized,
149 A: Allocator,
150{
151}
152
153// SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`.
154unsafe impl<T, A> Sync for Box<T, A>
155where
156 T: Sync + ?Sized,
157 A: Allocator,
158{
159}
160
161impl<T, A> Box<T, A>
162where
163 T: ?Sized,
164 A: Allocator,
165{
166 /// Creates a new `Box<T, A>` from a raw pointer.
167 ///
168 /// # Safety
169 ///
170 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently
171 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the
172 /// `Box`.
173 ///
174 /// For ZSTs, `raw` must be a dangling, well aligned pointer.
175 #[inline]
176 pub const unsafe fn from_raw(raw: *mut T) -> Self {
177 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function.
178 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer.
179 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData)
180 }
181
182 /// Consumes the `Box<T, A>` and returns a raw pointer.
183 ///
184 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive
185 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the
186 /// allocation, if any.
187 ///
188 /// # Examples
189 ///
190 /// ```
191 /// let x = KBox::new(24, GFP_KERNEL)?;
192 /// let ptr = KBox::into_raw(x);
193 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`.
194 /// let x = unsafe { KBox::from_raw(ptr) };
195 ///
196 /// assert_eq!(*x, 24);
197 /// # Ok::<(), Error>(())
198 /// ```
199 #[inline]
200 pub fn into_raw(b: Self) -> *mut T {
201 ManuallyDrop::new(b).0.as_ptr()
202 }
203
204 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference.
205 ///
206 /// See [`Box::into_raw`] for more details.
207 #[inline]
208 pub fn leak<'a>(b: Self) -> &'a mut T {
209 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer
210 // which points to an initialized instance of `T`.
211 unsafe { &mut *Box::into_raw(b) }
212 }
213}
214
215impl<T, A> Box<MaybeUninit<T>, A>
216where
217 A: Allocator,
218{
219 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`.
220 ///
221 /// It is undefined behavior to call this function while the value inside of `b` is not yet
222 /// fully initialized.
223 ///
224 /// # Safety
225 ///
226 /// Callers must ensure that the value inside of `b` is in an initialized state.
227 pub unsafe fn assume_init(self) -> Box<T, A> {
228 let raw = Self::into_raw(self);
229
230 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements
231 // of this function, the value inside the `Box` is in an initialized state. Hence, it is
232 // safe to reconstruct the `Box` as `Box<T, A>`.
233 unsafe { Box::from_raw(raw.cast()) }
234 }
235
236 /// Writes the value and converts to `Box<T, A>`.
237 pub fn write(mut self, value: T) -> Box<T, A> {
238 (*self).write(value);
239
240 // SAFETY: We've just initialized `b`'s value.
241 unsafe { self.assume_init() }
242 }
243}
244
245impl<T, A> Box<T, A>
246where
247 A: Allocator,
248{
249 /// Creates a new `Box<T, A>` and initializes its contents with `x`.
250 ///
251 /// New memory is allocated with `A`. The allocation may fail, in which case an error is
252 /// returned. For ZSTs no memory is allocated.
253 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
254 let b = Self::new_uninit(flags)?;
255 Ok(Box::write(b, x))
256 }
257
258 /// Creates a new `Box<T, A>` with uninitialized contents.
259 ///
260 /// New memory is allocated with `A`. The allocation may fail, in which case an error is
261 /// returned. For ZSTs no memory is allocated.
262 ///
263 /// # Examples
264 ///
265 /// ```
266 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?;
267 /// let b = KBox::write(b, 24);
268 ///
269 /// assert_eq!(*b, 24_u64);
270 /// # Ok::<(), Error>(())
271 /// ```
272 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
273 let layout = Layout::new::<MaybeUninit<T>>();
274 let ptr = A::alloc(layout, flags)?;
275
276 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`,
277 // which is sufficient in size and alignment for storing a `T`.
278 Ok(Box(ptr.cast(), PhantomData))
279 }
280
281 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be
282 /// pinned in memory and can't be moved.
283 #[inline]
284 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError>
285 where
286 A: 'static,
287 {
288 Ok(Self::new(x, flags)?.into())
289 }
290
291 /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement
292 /// [`Unpin`], then `x` will be pinned in memory and can't be moved.
293 pub fn into_pin(this: Self) -> Pin<Self> {
294 this.into()
295 }
296
297 /// Forgets the contents (does not run the destructor), but keeps the allocation.
298 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> {
299 let ptr = Self::into_raw(this);
300
301 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`.
302 unsafe { Box::from_raw(ptr.cast()) }
303 }
304
305 /// Drops the contents, but keeps the allocation.
306 ///
307 /// # Examples
308 ///
309 /// ```
310 /// let value = KBox::new([0; 32], GFP_KERNEL)?;
311 /// assert_eq!(*value, [0; 32]);
312 /// let value = KBox::drop_contents(value);
313 /// // Now we can re-use `value`:
314 /// let value = KBox::write(value, [1; 32]);
315 /// assert_eq!(*value, [1; 32]);
316 /// # Ok::<(), Error>(())
317 /// ```
318 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> {
319 let ptr = this.0.as_ptr();
320
321 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the
322 // value stored in `this` again.
323 unsafe { core::ptr::drop_in_place(ptr) };
324
325 Self::forget_contents(this)
326 }
327
328 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`.
329 pub fn into_inner(b: Self) -> T {
330 // SAFETY: By the type invariant `&*b` is valid for `read`.
331 let value = unsafe { core::ptr::read(&*b) };
332 let _ = Self::forget_contents(b);
333 value
334 }
335}
336
337impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
338where
339 T: ?Sized,
340 A: Allocator,
341{
342 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
343 /// `*b` will be pinned in memory and can't be moved.
344 ///
345 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory.
346 fn from(b: Box<T, A>) -> Self {
347 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long
348 // as `T` does not implement `Unpin`.
349 unsafe { Pin::new_unchecked(b) }
350 }
351}
352
353impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A>
354where
355 A: Allocator + 'static,
356{
357 type Initialized = Box<T, A>;
358
359 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
360 let slot = self.as_mut_ptr();
361 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
362 // slot is valid.
363 unsafe { init.__init(slot)? };
364 // SAFETY: All fields have been initialized.
365 Ok(unsafe { Box::assume_init(self) })
366 }
367
368 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
369 let slot = self.as_mut_ptr();
370 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
371 // slot is valid and will not be moved, because we pin it later.
372 unsafe { init.__pinned_init(slot)? };
373 // SAFETY: All fields have been initialized.
374 Ok(unsafe { Box::assume_init(self) }.into())
375 }
376}
377
378impl<T, A> InPlaceInit<T> for Box<T, A>
379where
380 A: Allocator + 'static,
381{
382 type PinnedSelf = Pin<Self>;
383
384 #[inline]
385 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
386 where
387 E: From<AllocError>,
388 {
389 Box::<_, A>::new_uninit(flags)?.write_pin_init(init)
390 }
391
392 #[inline]
393 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
394 where
395 E: From<AllocError>,
396 {
397 Box::<_, A>::new_uninit(flags)?.write_init(init)
398 }
399}
400
401impl<T: 'static, A> ForeignOwnable for Box<T, A>
402where
403 A: Allocator,
404{
405 type Borrowed<'a> = &'a T;
406 type BorrowedMut<'a> = &'a mut T;
407
408 fn into_foreign(self) -> *mut crate::ffi::c_void {
409 Box::into_raw(self).cast()
410 }
411
412 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self {
413 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
414 // call to `Self::into_foreign`.
415 unsafe { Box::from_raw(ptr.cast()) }
416 }
417
418 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> &'a T {
419 // SAFETY: The safety requirements of this method ensure that the object remains alive and
420 // immutable for the duration of 'a.
421 unsafe { &*ptr.cast() }
422 }
423
424 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> &'a mut T {
425 let ptr = ptr.cast();
426 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that
427 // nothing else will access the value for the duration of 'a.
428 unsafe { &mut *ptr }
429 }
430}
431
432impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
433where
434 A: Allocator,
435{
436 type Borrowed<'a> = Pin<&'a T>;
437 type BorrowedMut<'a> = Pin<&'a mut T>;
438
439 fn into_foreign(self) -> *mut crate::ffi::c_void {
440 // SAFETY: We are still treating the box as pinned.
441 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast()
442 }
443
444 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self {
445 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
446 // call to `Self::into_foreign`.
447 unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) }
448 }
449
450 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a T> {
451 // SAFETY: The safety requirements for this function ensure that the object is still alive,
452 // so it is safe to dereference the raw pointer.
453 // The safety requirements of `from_foreign` also ensure that the object remains alive for
454 // the lifetime of the returned value.
455 let r = unsafe { &*ptr.cast() };
456
457 // SAFETY: This pointer originates from a `Pin<Box<T>>`.
458 unsafe { Pin::new_unchecked(r) }
459 }
460
461 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a mut T> {
462 let ptr = ptr.cast();
463 // SAFETY: The safety requirements for this function ensure that the object is still alive,
464 // so it is safe to dereference the raw pointer.
465 // The safety requirements of `from_foreign` also ensure that the object remains alive for
466 // the lifetime of the returned value.
467 let r = unsafe { &mut *ptr };
468
469 // SAFETY: This pointer originates from a `Pin<Box<T>>`.
470 unsafe { Pin::new_unchecked(r) }
471 }
472}
473
474impl<T, A> Deref for Box<T, A>
475where
476 T: ?Sized,
477 A: Allocator,
478{
479 type Target = T;
480
481 fn deref(&self) -> &T {
482 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
483 // instance of `T`.
484 unsafe { self.0.as_ref() }
485 }
486}
487
488impl<T, A> DerefMut for Box<T, A>
489where
490 T: ?Sized,
491 A: Allocator,
492{
493 fn deref_mut(&mut self) -> &mut T {
494 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
495 // instance of `T`.
496 unsafe { self.0.as_mut() }
497 }
498}
499
500impl<T, A> fmt::Display for Box<T, A>
501where
502 T: ?Sized + fmt::Display,
503 A: Allocator,
504{
505 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
506 <T as fmt::Display>::fmt(&**self, f)
507 }
508}
509
510impl<T, A> fmt::Debug for Box<T, A>
511where
512 T: ?Sized + fmt::Debug,
513 A: Allocator,
514{
515 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
516 <T as fmt::Debug>::fmt(&**self, f)
517 }
518}
519
520impl<T, A> Drop for Box<T, A>
521where
522 T: ?Sized,
523 A: Allocator,
524{
525 fn drop(&mut self) {
526 let layout = Layout::for_value::<T>(self);
527
528 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
529 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
530
531 // SAFETY:
532 // - `self.0` was previously allocated with `A`.
533 // - `layout` is equal to the `Layout´ `self.0` was allocated with.
534 unsafe { A::free(self.0.cast(), layout) };
535 }
536}