kernel/regulator.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Regulator abstractions, providing a standard kernel interface to control
4//! voltage and current regulators.
5//!
6//! The intention is to allow systems to dynamically control regulator power
7//! output in order to save power and prolong battery life. This applies to both
8//! voltage regulators (where voltage output is controllable) and current sinks
9//! (where current limit is controllable).
10//!
11//! C header: [`include/linux/regulator/consumer.h`](srctree/include/linux/regulator/consumer.h)
12//!
13//! Regulators are modeled in Rust with a collection of states. Each state may
14//! enforce a given invariant, and they may convert between each other where applicable.
15//!
16//! See [Voltage and current regulator API](https://docs.kernel.org/driver-api/regulator.html)
17//! for more information.
18
19use crate::{
20 bindings,
21 device::Device,
22 error::{from_err_ptr, to_result, Result},
23 prelude::*,
24};
25
26use core::{marker::PhantomData, mem::ManuallyDrop, ptr::NonNull};
27
28mod private {
29 pub trait Sealed {}
30
31 impl Sealed for super::Enabled {}
32 impl Sealed for super::Disabled {}
33 impl Sealed for super::Dynamic {}
34}
35
36/// A trait representing the different states a [`Regulator`] can be in.
37pub trait RegulatorState: private::Sealed + 'static {
38 /// Whether the regulator should be disabled when dropped.
39 const DISABLE_ON_DROP: bool;
40}
41
42/// A state where the [`Regulator`] is known to be enabled.
43///
44/// The `enable` reference count held by this state is decremented when it is
45/// dropped.
46pub struct Enabled;
47
48/// A state where this [`Regulator`] handle has not specifically asked for the
49/// underlying regulator to be enabled. This means that this reference does not
50/// own an `enable` reference count, but the regulator may still be on.
51pub struct Disabled;
52
53/// A state that models the C API. The [`Regulator`] can be either enabled or
54/// disabled, and the user is in control of the reference count. This is also
55/// the default state.
56///
57/// Use [`Regulator::is_enabled`] to check the regulator's current state.
58pub struct Dynamic;
59
60impl RegulatorState for Enabled {
61 const DISABLE_ON_DROP: bool = true;
62}
63
64impl RegulatorState for Disabled {
65 const DISABLE_ON_DROP: bool = false;
66}
67
68impl RegulatorState for Dynamic {
69 const DISABLE_ON_DROP: bool = false;
70}
71
72/// A trait that abstracts the ability to check if a [`Regulator`] is enabled.
73pub trait IsEnabled: RegulatorState {}
74impl IsEnabled for Disabled {}
75impl IsEnabled for Dynamic {}
76
77/// An error that can occur when trying to convert a [`Regulator`] between states.
78pub struct Error<State: RegulatorState> {
79 /// The error that occurred.
80 pub error: kernel::error::Error,
81
82 /// The regulator that caused the error, so that the operation may be retried.
83 pub regulator: Regulator<State>,
84}
85
86/// A `struct regulator` abstraction.
87///
88/// # Examples
89///
90/// ## Enabling a regulator
91///
92/// This example uses [`Regulator<Enabled>`], which is suitable for drivers that
93/// enable a regulator at probe time and leave them on until the device is
94/// removed or otherwise shutdown.
95///
96/// These users can store [`Regulator<Enabled>`] directly in their driver's
97/// private data struct.
98///
99/// ```
100/// # use kernel::prelude::*;
101/// # use kernel::c_str;
102/// # use kernel::device::Device;
103/// # use kernel::regulator::{Voltage, Regulator, Disabled, Enabled};
104/// fn enable(dev: &Device, min_voltage: Voltage, max_voltage: Voltage) -> Result {
105/// // Obtain a reference to a (fictitious) regulator.
106/// let regulator: Regulator<Disabled> = Regulator::<Disabled>::get(dev, c_str!("vcc"))?;
107///
108/// // The voltage can be set before enabling the regulator if needed, e.g.:
109/// regulator.set_voltage(min_voltage, max_voltage)?;
110///
111/// // The same applies for `get_voltage()`, i.e.:
112/// let voltage: Voltage = regulator.get_voltage()?;
113///
114/// // Enables the regulator, consuming the previous value.
115/// //
116/// // From now on, the regulator is known to be enabled because of the type
117/// // `Enabled`.
118/// //
119/// // If this operation fails, the `Error` will contain the regulator
120/// // reference, so that the operation may be retried.
121/// let regulator: Regulator<Enabled> =
122/// regulator.try_into_enabled().map_err(|error| error.error)?;
123///
124/// // The voltage can also be set after enabling the regulator, e.g.:
125/// regulator.set_voltage(min_voltage, max_voltage)?;
126///
127/// // The same applies for `get_voltage()`, i.e.:
128/// let voltage: Voltage = regulator.get_voltage()?;
129///
130/// // Dropping an enabled regulator will disable it. The refcount will be
131/// // decremented.
132/// drop(regulator);
133///
134/// // ...
135///
136/// Ok(())
137/// }
138/// ```
139///
140/// A more concise shortcut is available for enabling a regulator. This is
141/// equivalent to `regulator_get_enable()`:
142///
143/// ```
144/// # use kernel::prelude::*;
145/// # use kernel::c_str;
146/// # use kernel::device::Device;
147/// # use kernel::regulator::{Voltage, Regulator, Enabled};
148/// fn enable(dev: &Device) -> Result {
149/// // Obtain a reference to a (fictitious) regulator and enable it.
150/// let regulator: Regulator<Enabled> = Regulator::<Enabled>::get(dev, c_str!("vcc"))?;
151///
152/// // Dropping an enabled regulator will disable it. The refcount will be
153/// // decremented.
154/// drop(regulator);
155///
156/// // ...
157///
158/// Ok(())
159/// }
160/// ```
161///
162/// ## Disabling a regulator
163///
164/// ```
165/// # use kernel::prelude::*;
166/// # use kernel::device::Device;
167/// # use kernel::regulator::{Regulator, Enabled, Disabled};
168/// fn disable(dev: &Device, regulator: Regulator<Enabled>) -> Result {
169/// // We can also disable an enabled regulator without reliquinshing our
170/// // refcount:
171/// //
172/// // If this operation fails, the `Error` will contain the regulator
173/// // reference, so that the operation may be retried.
174/// let regulator: Regulator<Disabled> =
175/// regulator.try_into_disabled().map_err(|error| error.error)?;
176///
177/// // The refcount will be decremented when `regulator` is dropped.
178/// drop(regulator);
179///
180/// // ...
181///
182/// Ok(())
183/// }
184/// ```
185///
186/// ## Using [`Regulator<Dynamic>`]
187///
188/// This example mimics the behavior of the C API, where the user is in
189/// control of the enabled reference count. This is useful for drivers that
190/// might call enable and disable to manage the `enable` reference count at
191/// runtime, perhaps as a result of `open()` and `close()` calls or whatever
192/// other driver-specific or subsystem-specific hooks.
193///
194/// ```
195/// # use kernel::prelude::*;
196/// # use kernel::c_str;
197/// # use kernel::device::Device;
198/// # use kernel::regulator::{Regulator, Dynamic};
199/// struct PrivateData {
200/// regulator: Regulator<Dynamic>,
201/// }
202///
203/// // A fictictious probe function that obtains a regulator and sets it up.
204/// fn probe(dev: &Device) -> Result<PrivateData> {
205/// // Obtain a reference to a (fictitious) regulator.
206/// let mut regulator = Regulator::<Dynamic>::get(dev, c_str!("vcc"))?;
207///
208/// Ok(PrivateData { regulator })
209/// }
210///
211/// // A fictictious function that indicates that the device is going to be used.
212/// fn open(dev: &Device, data: &mut PrivateData) -> Result {
213/// // Increase the `enabled` reference count.
214/// data.regulator.enable()?;
215///
216/// Ok(())
217/// }
218///
219/// fn close(dev: &Device, data: &mut PrivateData) -> Result {
220/// // Decrease the `enabled` reference count.
221/// data.regulator.disable()?;
222///
223/// Ok(())
224/// }
225///
226/// fn remove(dev: &Device, data: PrivateData) -> Result {
227/// // `PrivateData` is dropped here, which will drop the
228/// // `Regulator<Dynamic>` in turn.
229/// //
230/// // The reference that was obtained by `regulator_get()` will be
231/// // released, but it is up to the user to make sure that the number of calls
232/// // to `enable()` and `disabled()` are balanced before this point.
233/// Ok(())
234/// }
235/// ```
236///
237/// # Invariants
238///
239/// - `inner` is a non-null wrapper over a pointer to a `struct
240/// regulator` obtained from [`regulator_get()`].
241///
242/// [`regulator_get()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_get
243pub struct Regulator<State = Dynamic>
244where
245 State: RegulatorState,
246{
247 inner: NonNull<bindings::regulator>,
248 _phantom: PhantomData<State>,
249}
250
251impl<T: RegulatorState> Regulator<T> {
252 /// Sets the voltage for the regulator.
253 ///
254 /// This can be used to ensure that the device powers up cleanly.
255 pub fn set_voltage(&self, min_voltage: Voltage, max_voltage: Voltage) -> Result {
256 // SAFETY: Safe as per the type invariants of `Regulator`.
257 to_result(unsafe {
258 bindings::regulator_set_voltage(
259 self.inner.as_ptr(),
260 min_voltage.as_microvolts(),
261 max_voltage.as_microvolts(),
262 )
263 })
264 }
265
266 /// Gets the current voltage of the regulator.
267 pub fn get_voltage(&self) -> Result<Voltage> {
268 // SAFETY: Safe as per the type invariants of `Regulator`.
269 let voltage = unsafe { bindings::regulator_get_voltage(self.inner.as_ptr()) };
270 if voltage < 0 {
271 Err(kernel::error::Error::from_errno(voltage))
272 } else {
273 Ok(Voltage::from_microvolts(voltage))
274 }
275 }
276
277 fn get_internal(dev: &Device, name: &CStr) -> Result<Regulator<T>> {
278 // SAFETY: It is safe to call `regulator_get()`, on a device pointer
279 // received from the C code.
280 let inner = from_err_ptr(unsafe { bindings::regulator_get(dev.as_raw(), name.as_ptr()) })?;
281
282 // SAFETY: We can safely trust `inner` to be a pointer to a valid
283 // regulator if `ERR_PTR` was not returned.
284 let inner = unsafe { NonNull::new_unchecked(inner) };
285
286 Ok(Self {
287 inner,
288 _phantom: PhantomData,
289 })
290 }
291
292 fn enable_internal(&mut self) -> Result {
293 // SAFETY: Safe as per the type invariants of `Regulator`.
294 to_result(unsafe { bindings::regulator_enable(self.inner.as_ptr()) })
295 }
296
297 fn disable_internal(&mut self) -> Result {
298 // SAFETY: Safe as per the type invariants of `Regulator`.
299 to_result(unsafe { bindings::regulator_disable(self.inner.as_ptr()) })
300 }
301}
302
303impl Regulator<Disabled> {
304 /// Obtains a [`Regulator`] instance from the system.
305 pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
306 Regulator::get_internal(dev, name)
307 }
308
309 /// Attempts to convert the regulator to an enabled state.
310 pub fn try_into_enabled(self) -> Result<Regulator<Enabled>, Error<Disabled>> {
311 // We will be transferring the ownership of our `regulator_get()` count to
312 // `Regulator<Enabled>`.
313 let mut regulator = ManuallyDrop::new(self);
314
315 regulator
316 .enable_internal()
317 .map(|()| Regulator {
318 inner: regulator.inner,
319 _phantom: PhantomData,
320 })
321 .map_err(|error| Error {
322 error,
323 regulator: ManuallyDrop::into_inner(regulator),
324 })
325 }
326}
327
328impl Regulator<Enabled> {
329 /// Obtains a [`Regulator`] instance from the system and enables it.
330 ///
331 /// This is equivalent to calling `regulator_get_enable()` in the C API.
332 pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
333 Regulator::<Disabled>::get_internal(dev, name)?
334 .try_into_enabled()
335 .map_err(|error| error.error)
336 }
337
338 /// Attempts to convert the regulator to a disabled state.
339 pub fn try_into_disabled(self) -> Result<Regulator<Disabled>, Error<Enabled>> {
340 // We will be transferring the ownership of our `regulator_get()` count
341 // to `Regulator<Disabled>`.
342 let mut regulator = ManuallyDrop::new(self);
343
344 regulator
345 .disable_internal()
346 .map(|()| Regulator {
347 inner: regulator.inner,
348 _phantom: PhantomData,
349 })
350 .map_err(|error| Error {
351 error,
352 regulator: ManuallyDrop::into_inner(regulator),
353 })
354 }
355}
356
357impl Regulator<Dynamic> {
358 /// Obtains a [`Regulator`] instance from the system. The current state of
359 /// the regulator is unknown and it is up to the user to manage the enabled
360 /// reference count.
361 ///
362 /// This closely mimics the behavior of the C API and can be used to
363 /// dynamically manage the enabled reference count at runtime.
364 pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
365 Regulator::get_internal(dev, name)
366 }
367
368 /// Increases the `enabled` reference count.
369 pub fn enable(&mut self) -> Result {
370 self.enable_internal()
371 }
372
373 /// Decreases the `enabled` reference count.
374 pub fn disable(&mut self) -> Result {
375 self.disable_internal()
376 }
377}
378
379impl<T: IsEnabled> Regulator<T> {
380 /// Checks if the regulator is enabled.
381 pub fn is_enabled(&self) -> bool {
382 // SAFETY: Safe as per the type invariants of `Regulator`.
383 unsafe { bindings::regulator_is_enabled(self.inner.as_ptr()) != 0 }
384 }
385}
386
387impl<T: RegulatorState> Drop for Regulator<T> {
388 fn drop(&mut self) {
389 if T::DISABLE_ON_DROP {
390 // SAFETY: By the type invariants, we know that `self` owns a
391 // reference on the enabled refcount, so it is safe to relinquish it
392 // now.
393 unsafe { bindings::regulator_disable(self.inner.as_ptr()) };
394 }
395 // SAFETY: By the type invariants, we know that `self` owns a reference,
396 // so it is safe to relinquish it now.
397 unsafe { bindings::regulator_put(self.inner.as_ptr()) };
398 }
399}
400
401/// A voltage.
402///
403/// This type represents a voltage value in microvolts.
404#[repr(transparent)]
405#[derive(Copy, Clone, PartialEq, Eq)]
406pub struct Voltage(i32);
407
408impl Voltage {
409 /// Creates a new `Voltage` from a value in microvolts.
410 pub fn from_microvolts(uv: i32) -> Self {
411 Self(uv)
412 }
413
414 /// Returns the value of the voltage in microvolts as an [`i32`].
415 pub fn as_microvolts(self) -> i32 {
416 self.0
417 }
418}