kernel/regulator.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Regulator abstractions, providing a standard kernel interface to control
4//! voltage and current regulators.
5//!
6//! The intention is to allow systems to dynamically control regulator power
7//! output in order to save power and prolong battery life. This applies to both
8//! voltage regulators (where voltage output is controllable) and current sinks
9//! (where current limit is controllable).
10//!
11//! C header: [`include/linux/regulator/consumer.h`](srctree/include/linux/regulator/consumer.h)
12//!
13//! Regulators are modeled in Rust with a collection of states. Each state may
14//! enforce a given invariant, and they may convert between each other where applicable.
15//!
16//! See [Voltage and current regulator API](https://docs.kernel.org/driver-api/regulator.html)
17//! for more information.
18
19use crate::{
20 bindings,
21 device::{Bound, Device},
22 error::{from_err_ptr, to_result, Result},
23 prelude::*,
24};
25
26use core::{marker::PhantomData, mem::ManuallyDrop, ptr::NonNull};
27
28mod private {
29 pub trait Sealed {}
30
31 impl Sealed for super::Enabled {}
32 impl Sealed for super::Disabled {}
33}
34
35/// A trait representing the different states a [`Regulator`] can be in.
36pub trait RegulatorState: private::Sealed + 'static {
37 /// Whether the regulator should be disabled when dropped.
38 const DISABLE_ON_DROP: bool;
39}
40
41/// A state where the [`Regulator`] is known to be enabled.
42///
43/// The `enable` reference count held by this state is decremented when it is
44/// dropped.
45pub struct Enabled;
46
47/// A state where this [`Regulator`] handle has not specifically asked for the
48/// underlying regulator to be enabled. This means that this reference does not
49/// own an `enable` reference count, but the regulator may still be on.
50pub struct Disabled;
51
52impl RegulatorState for Enabled {
53 const DISABLE_ON_DROP: bool = true;
54}
55
56impl RegulatorState for Disabled {
57 const DISABLE_ON_DROP: bool = false;
58}
59
60/// A trait that abstracts the ability to check if a [`Regulator`] is enabled.
61pub trait IsEnabled: RegulatorState {}
62impl IsEnabled for Disabled {}
63
64/// An error that can occur when trying to convert a [`Regulator`] between states.
65pub struct Error<State: RegulatorState> {
66 /// The error that occurred.
67 pub error: kernel::error::Error,
68
69 /// The regulator that caused the error, so that the operation may be retried.
70 pub regulator: Regulator<State>,
71}
72/// Obtains and enables a [`devres`]-managed regulator for a device.
73///
74/// This calls [`regulator_disable()`] and [`regulator_put()`] automatically on
75/// driver detach.
76///
77/// This API is identical to `devm_regulator_get_enable()`, and should be
78/// preferred over the [`Regulator<T: RegulatorState>`] API if the caller only
79/// cares about the regulator being enabled.
80///
81/// [`devres`]: https://docs.kernel.org/driver-api/driver-model/devres.html
82/// [`regulator_disable()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_disable
83/// [`regulator_put()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_put
84pub fn devm_enable(dev: &Device<Bound>, name: &CStr) -> Result {
85 // SAFETY: `dev` is a valid and bound device, while `name` is a valid C
86 // string.
87 to_result(unsafe { bindings::devm_regulator_get_enable(dev.as_raw(), name.as_char_ptr()) })
88}
89
90/// Same as [`devm_enable`], but calls `devm_regulator_get_enable_optional`
91/// instead.
92///
93/// This obtains and enables a [`devres`]-managed regulator for a device, but
94/// does not print a message nor provides a dummy if the regulator is not found.
95///
96/// This calls [`regulator_disable()`] and [`regulator_put()`] automatically on
97/// driver detach.
98///
99/// [`devres`]: https://docs.kernel.org/driver-api/driver-model/devres.html
100/// [`regulator_disable()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_disable
101/// [`regulator_put()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_put
102pub fn devm_enable_optional(dev: &Device<Bound>, name: &CStr) -> Result {
103 // SAFETY: `dev` is a valid and bound device, while `name` is a valid C
104 // string.
105 to_result(unsafe {
106 bindings::devm_regulator_get_enable_optional(dev.as_raw(), name.as_char_ptr())
107 })
108}
109
110/// A `struct regulator` abstraction.
111///
112/// # Examples
113///
114/// ## Enabling a regulator
115///
116/// This example uses [`Regulator<Enabled>`], which is suitable for drivers that
117/// enable a regulator at probe time and leave them on until the device is
118/// removed or otherwise shutdown.
119///
120/// These users can store [`Regulator<Enabled>`] directly in their driver's
121/// private data struct.
122///
123/// ```
124/// # use kernel::prelude::*;
125/// # use kernel::c_str;
126/// # use kernel::device::Device;
127/// # use kernel::regulator::{Voltage, Regulator, Disabled, Enabled};
128/// fn enable(dev: &Device, min_voltage: Voltage, max_voltage: Voltage) -> Result {
129/// // Obtain a reference to a (fictitious) regulator.
130/// let regulator: Regulator<Disabled> = Regulator::<Disabled>::get(dev, c_str!("vcc"))?;
131///
132/// // The voltage can be set before enabling the regulator if needed, e.g.:
133/// regulator.set_voltage(min_voltage, max_voltage)?;
134///
135/// // The same applies for `get_voltage()`, i.e.:
136/// let voltage: Voltage = regulator.get_voltage()?;
137///
138/// // Enables the regulator, consuming the previous value.
139/// //
140/// // From now on, the regulator is known to be enabled because of the type
141/// // `Enabled`.
142/// //
143/// // If this operation fails, the `Error` will contain the regulator
144/// // reference, so that the operation may be retried.
145/// let regulator: Regulator<Enabled> =
146/// regulator.try_into_enabled().map_err(|error| error.error)?;
147///
148/// // The voltage can also be set after enabling the regulator, e.g.:
149/// regulator.set_voltage(min_voltage, max_voltage)?;
150///
151/// // The same applies for `get_voltage()`, i.e.:
152/// let voltage: Voltage = regulator.get_voltage()?;
153///
154/// // Dropping an enabled regulator will disable it. The refcount will be
155/// // decremented.
156/// drop(regulator);
157///
158/// // ...
159///
160/// Ok(())
161/// }
162/// ```
163///
164/// A more concise shortcut is available for enabling a regulator. This is
165/// equivalent to `regulator_get_enable()`:
166///
167/// ```
168/// # use kernel::prelude::*;
169/// # use kernel::c_str;
170/// # use kernel::device::Device;
171/// # use kernel::regulator::{Voltage, Regulator, Enabled};
172/// fn enable(dev: &Device) -> Result {
173/// // Obtain a reference to a (fictitious) regulator and enable it.
174/// let regulator: Regulator<Enabled> = Regulator::<Enabled>::get(dev, c_str!("vcc"))?;
175///
176/// // Dropping an enabled regulator will disable it. The refcount will be
177/// // decremented.
178/// drop(regulator);
179///
180/// // ...
181///
182/// Ok(())
183/// }
184/// ```
185///
186/// If a driver only cares about the regulator being on for as long it is bound
187/// to a device, then it should use [`devm_enable`] or [`devm_enable_optional`].
188/// This should be the default use-case unless more fine-grained control over
189/// the regulator's state is required.
190///
191/// [`devm_enable`]: crate::regulator::devm_enable
192/// [`devm_optional`]: crate::regulator::devm_enable_optional
193///
194/// ```
195/// # use kernel::prelude::*;
196/// # use kernel::c_str;
197/// # use kernel::device::{Bound, Device};
198/// # use kernel::regulator;
199/// fn enable(dev: &Device<Bound>) -> Result {
200/// // Obtain a reference to a (fictitious) regulator and enable it. This
201/// // call only returns whether the operation succeeded.
202/// regulator::devm_enable(dev, c_str!("vcc"))?;
203///
204/// // The regulator will be disabled and put when `dev` is unbound.
205/// Ok(())
206/// }
207/// ```
208///
209/// ## Disabling a regulator
210///
211/// ```
212/// # use kernel::prelude::*;
213/// # use kernel::device::Device;
214/// # use kernel::regulator::{Regulator, Enabled, Disabled};
215/// fn disable(dev: &Device, regulator: Regulator<Enabled>) -> Result {
216/// // We can also disable an enabled regulator without reliquinshing our
217/// // refcount:
218/// //
219/// // If this operation fails, the `Error` will contain the regulator
220/// // reference, so that the operation may be retried.
221/// let regulator: Regulator<Disabled> =
222/// regulator.try_into_disabled().map_err(|error| error.error)?;
223///
224/// // The refcount will be decremented when `regulator` is dropped.
225/// drop(regulator);
226///
227/// // ...
228///
229/// Ok(())
230/// }
231/// ```
232///
233/// # Invariants
234///
235/// - `inner` is a non-null wrapper over a pointer to a `struct
236/// regulator` obtained from [`regulator_get()`].
237///
238/// [`regulator_get()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_get
239pub struct Regulator<State>
240where
241 State: RegulatorState,
242{
243 inner: NonNull<bindings::regulator>,
244 _phantom: PhantomData<State>,
245}
246
247impl<T: RegulatorState> Regulator<T> {
248 /// Sets the voltage for the regulator.
249 ///
250 /// This can be used to ensure that the device powers up cleanly.
251 pub fn set_voltage(&self, min_voltage: Voltage, max_voltage: Voltage) -> Result {
252 // SAFETY: Safe as per the type invariants of `Regulator`.
253 to_result(unsafe {
254 bindings::regulator_set_voltage(
255 self.inner.as_ptr(),
256 min_voltage.as_microvolts(),
257 max_voltage.as_microvolts(),
258 )
259 })
260 }
261
262 /// Gets the current voltage of the regulator.
263 pub fn get_voltage(&self) -> Result<Voltage> {
264 // SAFETY: Safe as per the type invariants of `Regulator`.
265 let voltage = unsafe { bindings::regulator_get_voltage(self.inner.as_ptr()) };
266
267 to_result(voltage).map(|()| Voltage::from_microvolts(voltage))
268 }
269
270 fn get_internal(dev: &Device, name: &CStr) -> Result<Regulator<T>> {
271 let inner =
272 // SAFETY: It is safe to call `regulator_get()`, on a device pointer
273 // received from the C code.
274 from_err_ptr(unsafe { bindings::regulator_get(dev.as_raw(), name.as_char_ptr()) })?;
275
276 // SAFETY: We can safely trust `inner` to be a pointer to a valid
277 // regulator if `ERR_PTR` was not returned.
278 let inner = unsafe { NonNull::new_unchecked(inner) };
279
280 Ok(Self {
281 inner,
282 _phantom: PhantomData,
283 })
284 }
285
286 fn enable_internal(&self) -> Result {
287 // SAFETY: Safe as per the type invariants of `Regulator`.
288 to_result(unsafe { bindings::regulator_enable(self.inner.as_ptr()) })
289 }
290
291 fn disable_internal(&self) -> Result {
292 // SAFETY: Safe as per the type invariants of `Regulator`.
293 to_result(unsafe { bindings::regulator_disable(self.inner.as_ptr()) })
294 }
295}
296
297impl Regulator<Disabled> {
298 /// Obtains a [`Regulator`] instance from the system.
299 pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
300 Regulator::get_internal(dev, name)
301 }
302
303 /// Attempts to convert the regulator to an enabled state.
304 pub fn try_into_enabled(self) -> Result<Regulator<Enabled>, Error<Disabled>> {
305 // We will be transferring the ownership of our `regulator_get()` count to
306 // `Regulator<Enabled>`.
307 let regulator = ManuallyDrop::new(self);
308
309 regulator
310 .enable_internal()
311 .map(|()| Regulator {
312 inner: regulator.inner,
313 _phantom: PhantomData,
314 })
315 .map_err(|error| Error {
316 error,
317 regulator: ManuallyDrop::into_inner(regulator),
318 })
319 }
320}
321
322impl Regulator<Enabled> {
323 /// Obtains a [`Regulator`] instance from the system and enables it.
324 ///
325 /// This is equivalent to calling `regulator_get_enable()` in the C API.
326 pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
327 Regulator::<Disabled>::get_internal(dev, name)?
328 .try_into_enabled()
329 .map_err(|error| error.error)
330 }
331
332 /// Attempts to convert the regulator to a disabled state.
333 pub fn try_into_disabled(self) -> Result<Regulator<Disabled>, Error<Enabled>> {
334 // We will be transferring the ownership of our `regulator_get()` count
335 // to `Regulator<Disabled>`.
336 let regulator = ManuallyDrop::new(self);
337
338 regulator
339 .disable_internal()
340 .map(|()| Regulator {
341 inner: regulator.inner,
342 _phantom: PhantomData,
343 })
344 .map_err(|error| Error {
345 error,
346 regulator: ManuallyDrop::into_inner(regulator),
347 })
348 }
349}
350
351impl<T: IsEnabled> Regulator<T> {
352 /// Checks if the regulator is enabled.
353 pub fn is_enabled(&self) -> bool {
354 // SAFETY: Safe as per the type invariants of `Regulator`.
355 unsafe { bindings::regulator_is_enabled(self.inner.as_ptr()) != 0 }
356 }
357}
358
359impl<T: RegulatorState> Drop for Regulator<T> {
360 fn drop(&mut self) {
361 if T::DISABLE_ON_DROP {
362 // SAFETY: By the type invariants, we know that `self` owns a
363 // reference on the enabled refcount, so it is safe to relinquish it
364 // now.
365 unsafe { bindings::regulator_disable(self.inner.as_ptr()) };
366 }
367 // SAFETY: By the type invariants, we know that `self` owns a reference,
368 // so it is safe to relinquish it now.
369 unsafe { bindings::regulator_put(self.inner.as_ptr()) };
370 }
371}
372
373// SAFETY: It is safe to send a `Regulator<T>` across threads. In particular, a
374// Regulator<T> can be dropped from any thread.
375unsafe impl<T: RegulatorState> Send for Regulator<T> {}
376
377// SAFETY: It is safe to send a &Regulator<T> across threads because the C side
378// handles its own locking.
379unsafe impl<T: RegulatorState> Sync for Regulator<T> {}
380
381/// A voltage.
382///
383/// This type represents a voltage value in microvolts.
384#[repr(transparent)]
385#[derive(Copy, Clone, PartialEq, Eq)]
386pub struct Voltage(i32);
387
388impl Voltage {
389 /// Creates a new `Voltage` from a value in microvolts.
390 pub fn from_microvolts(uv: i32) -> Self {
391 Self(uv)
392 }
393
394 /// Returns the value of the voltage in microvolts as an [`i32`].
395 pub fn as_microvolts(self) -> i32 {
396 self.0
397 }
398}