kernel/num/bounded.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Implementation of [`Bounded`], a wrapper around integer types limiting the number of bits
4//! usable for value representation.
5
6use core::{
7 cmp,
8 fmt,
9 ops::{
10 self,
11 Deref, //
12 }, //,
13};
14
15use kernel::{
16 num::Integer,
17 prelude::*, //
18};
19
20/// Evaluates to `true` if `$value` can be represented using at most `$n` bits in a `$type`.
21///
22/// `expr` must be of type `type`, or the result will be incorrect.
23///
24/// Can be used in const context.
25macro_rules! fits_within {
26 ($value:expr, $type:ty, $n:expr) => {{
27 let shift: u32 = <$type>::BITS - $n;
28
29 // `value` fits within `$n` bits if shifting it left by the number of unused bits, then
30 // right by the same number, doesn't change it.
31 //
32 // This method has the benefit of working for both unsigned and signed values.
33 ($value << shift) >> shift == $value
34 }};
35}
36
37/// Returns `true` if `value` can be represented with at most `N` bits in a `T`.
38#[inline(always)]
39fn fits_within<T: Integer>(value: T, num_bits: u32) -> bool {
40 fits_within!(value, T, num_bits)
41}
42
43/// An integer value that requires only the `N` least significant bits of the wrapped type to be
44/// encoded.
45///
46/// This limits the number of usable bits in the wrapped integer type, and thus the stored value to
47/// a narrower range, which provides guarantees that can be useful when working within e.g.
48/// bitfields.
49///
50/// # Invariants
51///
52/// - `N` is greater than `0`.
53/// - `N` is less than or equal to `T::BITS`.
54/// - Stored values can be represented with at most `N` bits.
55///
56/// # Examples
57///
58/// The preferred way to create values is through constants and the [`Bounded::new`] family of
59/// constructors, as they trigger a build error if the type invariants cannot be upheld.
60///
61/// ```
62/// use kernel::num::Bounded;
63///
64/// // An unsigned 8-bit integer, of which only the 4 LSBs are used.
65/// // The value `15` is statically validated to fit that constraint at build time.
66/// let v = Bounded::<u8, 4>::new::<15>();
67/// assert_eq!(v.get(), 15);
68///
69/// // Same using signed values.
70/// let v = Bounded::<i8, 4>::new::<-8>();
71/// assert_eq!(v.get(), -8);
72///
73/// // This doesn't build: a `u8` is smaller than the requested 9 bits.
74/// // let _ = Bounded::<u8, 9>::new::<10>();
75///
76/// // This also doesn't build: the requested value doesn't fit within 4 signed bits.
77/// // let _ = Bounded::<i8, 4>::new::<8>();
78/// ```
79///
80/// Values can also be validated at runtime with [`Bounded::try_new`].
81///
82/// ```
83/// use kernel::num::Bounded;
84///
85/// // This succeeds because `15` can be represented with 4 unsigned bits.
86/// assert!(Bounded::<u8, 4>::try_new(15).is_some());
87///
88/// // This fails because `16` cannot be represented with 4 unsigned bits.
89/// assert!(Bounded::<u8, 4>::try_new(16).is_none());
90/// ```
91///
92/// Non-constant expressions can be validated at build-time thanks to compiler optimizations. This
93/// should be used with caution, on simple expressions only.
94///
95/// ```
96/// use kernel::num::Bounded;
97/// # fn some_number() -> u32 { 0xffffffff }
98///
99/// // Here the compiler can infer from the mask that the type invariants are not violated, even
100/// // though the value returned by `some_number` is not statically known.
101/// let v = Bounded::<u32, 4>::from_expr(some_number() & 0xf);
102/// ```
103///
104/// Comparison and arithmetic operations are supported on [`Bounded`]s with a compatible backing
105/// type, regardless of their number of valid bits.
106///
107/// ```
108/// use kernel::num::Bounded;
109///
110/// let v1 = Bounded::<u32, 8>::new::<4>();
111/// let v2 = Bounded::<u32, 4>::new::<15>();
112///
113/// assert!(v1 != v2);
114/// assert!(v1 < v2);
115/// assert_eq!(v1 + v2, 19);
116/// assert_eq!(v2 % v1, 3);
117/// ```
118///
119/// These operations are also supported between a [`Bounded`] and its backing type.
120///
121/// ```
122/// use kernel::num::Bounded;
123///
124/// let v = Bounded::<u8, 4>::new::<15>();
125///
126/// assert!(v == 15);
127/// assert!(v > 12);
128/// assert_eq!(v + 5, 20);
129/// assert_eq!(v / 3, 5);
130/// ```
131///
132/// A change of backing types is possible using [`Bounded::cast`], and the number of valid bits can
133/// be extended or reduced with [`Bounded::extend`] and [`Bounded::try_shrink`].
134///
135/// ```
136/// use kernel::num::Bounded;
137///
138/// let v = Bounded::<u32, 12>::new::<127>();
139///
140/// // Changes backing type from `u32` to `u16`.
141/// let _: Bounded<u16, 12> = v.cast();
142///
143/// // This does not build, as `u8` is smaller than 12 bits.
144/// // let _: Bounded<u8, 12> = v.cast();
145///
146/// // We can safely extend the number of bits...
147/// let _ = v.extend::<15>();
148///
149/// // ... to the limits of the backing type. This doesn't build as a `u32` cannot contain 33 bits.
150/// // let _ = v.extend::<33>();
151///
152/// // Reducing the number of bits is validated at runtime. This works because `127` can be
153/// // represented with 8 bits.
154/// assert!(v.try_shrink::<8>().is_some());
155///
156/// // ... but not with 6, so this fails.
157/// assert!(v.try_shrink::<6>().is_none());
158/// ```
159///
160/// Infallible conversions from a primitive integer to a large-enough [`Bounded`] are supported.
161///
162/// ```
163/// use kernel::num::Bounded;
164///
165/// // This unsigned `Bounded` has 8 bits, so it can represent any `u8`.
166/// let v = Bounded::<u32, 8>::from(128u8);
167/// assert_eq!(v.get(), 128);
168///
169/// // This signed `Bounded` has 8 bits, so it can represent any `i8`.
170/// let v = Bounded::<i32, 8>::from(-128i8);
171/// assert_eq!(v.get(), -128);
172///
173/// // This doesn't build, as this 6-bit `Bounded` does not have enough capacity to represent a
174/// // `u8` (regardless of the passed value).
175/// // let _ = Bounded::<u32, 6>::from(10u8);
176///
177/// // Booleans can be converted into single-bit `Bounded`s.
178///
179/// let v = Bounded::<u64, 1>::from(false);
180/// assert_eq!(v.get(), 0);
181///
182/// let v = Bounded::<u64, 1>::from(true);
183/// assert_eq!(v.get(), 1);
184/// ```
185///
186/// Infallible conversions from a [`Bounded`] to a primitive integer are also supported, and
187/// dependent on the number of bits used for value representation, not on the backing type.
188///
189/// ```
190/// use kernel::num::Bounded;
191///
192/// // Even though its backing type is `u32`, this `Bounded` only uses 6 bits and thus can safely
193/// // be converted to a `u8`.
194/// let v = Bounded::<u32, 6>::new::<63>();
195/// assert_eq!(u8::from(v), 63);
196///
197/// // Same using signed values.
198/// let v = Bounded::<i32, 8>::new::<-128>();
199/// assert_eq!(i8::from(v), -128);
200///
201/// // This however does not build, as 10 bits won't fit into a `u8` (regardless of the actually
202/// // contained value).
203/// let _v = Bounded::<u32, 10>::new::<10>();
204/// // assert_eq!(u8::from(_v), 10);
205///
206/// // Single-bit `Bounded`s can be converted into a boolean.
207/// let v = Bounded::<u8, 1>::new::<1>();
208/// assert_eq!(bool::from(v), true);
209///
210/// let v = Bounded::<u8, 1>::new::<0>();
211/// assert_eq!(bool::from(v), false);
212/// ```
213///
214/// Fallible conversions from any primitive integer to any [`Bounded`] are also supported using the
215/// [`TryIntoBounded`] trait.
216///
217/// ```
218/// use kernel::num::{Bounded, TryIntoBounded};
219///
220/// // Succeeds because `128` fits into 8 bits.
221/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
222/// assert_eq!(v.as_deref().copied(), Some(128));
223///
224/// // Fails because `128` doesn't fit into 6 bits.
225/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
226/// assert_eq!(v, None);
227/// ```
228#[repr(transparent)]
229#[derive(Clone, Copy, Debug, Default, Hash)]
230pub struct Bounded<T: Integer, const N: u32>(T);
231
232/// Validating the value as a const expression cannot be done as a regular method, as the
233/// arithmetic operations we rely on to check the bounds are not const. Thus, implement
234/// [`Bounded::new`] using a macro.
235macro_rules! impl_const_new {
236 ($($type:ty)*) => {
237 $(
238 impl<const N: u32> Bounded<$type, N> {
239 /// Creates a [`Bounded`] for the constant `VALUE`.
240 ///
241 /// Fails at build time if `VALUE` cannot be represented with `N` bits.
242 ///
243 /// This method should be preferred to [`Self::from_expr`] whenever possible.
244 ///
245 /// # Examples
246 ///
247 /// ```
248 /// use kernel::num::Bounded;
249 ///
250 #[doc = ::core::concat!(
251 "let v = Bounded::<",
252 ::core::stringify!($type),
253 ", 4>::new::<7>();")]
254 /// assert_eq!(v.get(), 7);
255 /// ```
256 pub const fn new<const VALUE: $type>() -> Self {
257 // Statically assert that `VALUE` fits within the set number of bits.
258 const {
259 assert!(fits_within!(VALUE, $type, N));
260 }
261
262 // SAFETY: `fits_within` confirmed that `VALUE` can be represented within
263 // `N` bits.
264 unsafe { Self::__new(VALUE) }
265 }
266 }
267 )*
268 };
269}
270
271impl_const_new!(
272 u8 u16 u32 u64 usize
273 i8 i16 i32 i64 isize
274);
275
276impl<T, const N: u32> Bounded<T, N>
277where
278 T: Integer,
279{
280 /// Private constructor enforcing the type invariants.
281 ///
282 /// All instances of [`Bounded`] must be created through this method as it enforces most of the
283 /// type invariants.
284 ///
285 /// The caller remains responsible for checking, either statically or dynamically, that `value`
286 /// can be represented as a `T` using at most `N` bits.
287 ///
288 /// # Safety
289 ///
290 /// The caller must ensure that `value` can be represented within `N` bits.
291 const unsafe fn __new(value: T) -> Self {
292 // Enforce the type invariants.
293 const {
294 // `N` cannot be zero.
295 assert!(N != 0);
296 // The backing type is at least as large as `N` bits.
297 assert!(N <= T::BITS);
298 }
299
300 Self(value)
301 }
302
303 /// Attempts to turn `value` into a `Bounded` using `N` bits.
304 ///
305 /// Returns [`None`] if `value` doesn't fit within `N` bits.
306 ///
307 /// # Examples
308 ///
309 /// ```
310 /// use kernel::num::Bounded;
311 ///
312 /// let v = Bounded::<u8, 1>::try_new(1);
313 /// assert_eq!(v.as_deref().copied(), Some(1));
314 ///
315 /// let v = Bounded::<i8, 4>::try_new(-2);
316 /// assert_eq!(v.as_deref().copied(), Some(-2));
317 ///
318 /// // `0x1ff` doesn't fit into 8 unsigned bits.
319 /// let v = Bounded::<u32, 8>::try_new(0x1ff);
320 /// assert_eq!(v, None);
321 ///
322 /// // The range of values representable with 4 bits is `[-8..=7]`. The following tests these
323 /// // limits.
324 /// let v = Bounded::<i8, 4>::try_new(-8);
325 /// assert_eq!(v.map(Bounded::get), Some(-8));
326 /// let v = Bounded::<i8, 4>::try_new(-9);
327 /// assert_eq!(v, None);
328 /// let v = Bounded::<i8, 4>::try_new(7);
329 /// assert_eq!(v.map(Bounded::get), Some(7));
330 /// let v = Bounded::<i8, 4>::try_new(8);
331 /// assert_eq!(v, None);
332 /// ```
333 pub fn try_new(value: T) -> Option<Self> {
334 fits_within(value, N).then(|| {
335 // SAFETY: `fits_within` confirmed that `value` can be represented within `N` bits.
336 unsafe { Self::__new(value) }
337 })
338 }
339
340 /// Checks that `expr` is valid for this type at compile-time and build a new value.
341 ///
342 /// This relies on [`build_assert!`] and guaranteed optimization to perform validation at
343 /// compile-time. If `expr` cannot be proved to be within the requested bounds at compile-time,
344 /// use the fallible [`Self::try_new`] instead.
345 ///
346 /// Limit this to simple, easily provable expressions, and prefer one of the [`Self::new`]
347 /// constructors whenever possible as they statically validate the value instead of relying on
348 /// compiler optimizations.
349 ///
350 /// # Examples
351 ///
352 /// ```
353 /// use kernel::num::Bounded;
354 /// # fn some_number() -> u32 { 0xffffffff }
355 ///
356 /// // Some undefined number.
357 /// let v: u32 = some_number();
358 ///
359 /// // Triggers a build error as `v` cannot be asserted to fit within 4 bits...
360 /// // let _ = Bounded::<u32, 4>::from_expr(v);
361 ///
362 /// // ... but this works as the compiler can assert the range from the mask.
363 /// let _ = Bounded::<u32, 4>::from_expr(v & 0xf);
364 ///
365 /// // These expressions are simple enough to be proven correct, but since they are static the
366 /// // `new` constructor should be preferred.
367 /// assert_eq!(Bounded::<u8, 1>::from_expr(1).get(), 1);
368 /// assert_eq!(Bounded::<u16, 8>::from_expr(0xff).get(), 0xff);
369 /// ```
370 #[inline(always)]
371 pub fn from_expr(expr: T) -> Self {
372 crate::build_assert!(
373 fits_within(expr, N),
374 "Requested value larger than maximal representable value."
375 );
376
377 // SAFETY: `fits_within` confirmed that `expr` can be represented within `N` bits.
378 unsafe { Self::__new(expr) }
379 }
380
381 /// Returns the wrapped value as the backing type.
382 ///
383 /// # Examples
384 ///
385 /// ```
386 /// use kernel::num::Bounded;
387 ///
388 /// let v = Bounded::<u32, 4>::new::<7>();
389 /// assert_eq!(v.get(), 7u32);
390 /// ```
391 pub fn get(self) -> T {
392 *self.deref()
393 }
394
395 /// Increases the number of bits usable for `self`.
396 ///
397 /// This operation cannot fail.
398 ///
399 /// # Examples
400 ///
401 /// ```
402 /// use kernel::num::Bounded;
403 ///
404 /// let v = Bounded::<u32, 4>::new::<7>();
405 /// let larger_v = v.extend::<12>();
406 /// // The contained values are equal even though `larger_v` has a bigger capacity.
407 /// assert_eq!(larger_v, v);
408 /// ```
409 pub const fn extend<const M: u32>(self) -> Bounded<T, M> {
410 const {
411 assert!(
412 M >= N,
413 "Requested number of bits is less than the current representation."
414 );
415 }
416
417 // SAFETY: The value did fit within `N` bits, so it will all the more fit within
418 // the larger `M` bits.
419 unsafe { Bounded::__new(self.0) }
420 }
421
422 /// Attempts to shrink the number of bits usable for `self`.
423 ///
424 /// Returns [`None`] if the value of `self` cannot be represented within `M` bits.
425 ///
426 /// # Examples
427 ///
428 /// ```
429 /// use kernel::num::Bounded;
430 ///
431 /// let v = Bounded::<u32, 12>::new::<7>();
432 ///
433 /// // `7` can be represented using 3 unsigned bits...
434 /// let smaller_v = v.try_shrink::<3>();
435 /// assert_eq!(smaller_v.as_deref().copied(), Some(7));
436 ///
437 /// // ... but doesn't fit within `2` bits.
438 /// assert_eq!(v.try_shrink::<2>(), None);
439 /// ```
440 pub fn try_shrink<const M: u32>(self) -> Option<Bounded<T, M>> {
441 Bounded::<T, M>::try_new(self.get())
442 }
443
444 /// Casts `self` into a [`Bounded`] backed by a different storage type, but using the same
445 /// number of valid bits.
446 ///
447 /// Both `T` and `U` must be of same signedness, and `U` must be at least as large as
448 /// `N` bits, or a build error will occur.
449 ///
450 /// # Examples
451 ///
452 /// ```
453 /// use kernel::num::Bounded;
454 ///
455 /// let v = Bounded::<u32, 12>::new::<127>();
456 ///
457 /// let u16_v: Bounded<u16, 12> = v.cast();
458 /// assert_eq!(u16_v.get(), 127);
459 ///
460 /// // This won't build: a `u8` is smaller than the required 12 bits.
461 /// // let _: Bounded<u8, 12> = v.cast();
462 /// ```
463 pub fn cast<U>(self) -> Bounded<U, N>
464 where
465 U: TryFrom<T> + Integer,
466 T: Integer,
467 U: Integer<Signedness = T::Signedness>,
468 {
469 // SAFETY: The converted value is represented using `N` bits, `U` can contain `N` bits, and
470 // `U` and `T` have the same sign, hence this conversion cannot fail.
471 let value = unsafe { U::try_from(self.get()).unwrap_unchecked() };
472
473 // SAFETY: Although the backing type has changed, the value is still represented within
474 // `N` bits, and with the same signedness.
475 unsafe { Bounded::__new(value) }
476 }
477}
478
479impl<T, const N: u32> Deref for Bounded<T, N>
480where
481 T: Integer,
482{
483 type Target = T;
484
485 fn deref(&self) -> &Self::Target {
486 // Enforce the invariant to inform the compiler of the bounds of the value.
487 if !fits_within(self.0, N) {
488 // SAFETY: Per the `Bounded` invariants, `fits_within` can never return `false` on the
489 // value of a valid instance.
490 unsafe { core::hint::unreachable_unchecked() }
491 }
492
493 &self.0
494 }
495}
496
497/// Trait similar to [`TryInto`] but for [`Bounded`], to avoid conflicting implementations.
498///
499/// # Examples
500///
501/// ```
502/// use kernel::num::{Bounded, TryIntoBounded};
503///
504/// // Succeeds because `128` fits into 8 bits.
505/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
506/// assert_eq!(v.as_deref().copied(), Some(128));
507///
508/// // Fails because `128` doesn't fit into 6 bits.
509/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
510/// assert_eq!(v, None);
511/// ```
512pub trait TryIntoBounded<T: Integer, const N: u32> {
513 /// Attempts to convert `self` into a [`Bounded`] using `N` bits.
514 ///
515 /// Returns [`None`] if `self` does not fit into the target type.
516 fn try_into_bounded(self) -> Option<Bounded<T, N>>;
517}
518
519/// Any integer value can be attempted to be converted into a [`Bounded`] of any size.
520impl<T, U, const N: u32> TryIntoBounded<T, N> for U
521where
522 T: Integer,
523 U: TryInto<T>,
524{
525 fn try_into_bounded(self) -> Option<Bounded<T, N>> {
526 self.try_into().ok().and_then(Bounded::try_new)
527 }
528}
529
530// Comparisons between `Bounded`s.
531
532impl<T, U, const N: u32, const M: u32> PartialEq<Bounded<U, M>> for Bounded<T, N>
533where
534 T: Integer,
535 U: Integer,
536 T: PartialEq<U>,
537{
538 fn eq(&self, other: &Bounded<U, M>) -> bool {
539 self.get() == other.get()
540 }
541}
542
543impl<T, const N: u32> Eq for Bounded<T, N> where T: Integer {}
544
545impl<T, U, const N: u32, const M: u32> PartialOrd<Bounded<U, M>> for Bounded<T, N>
546where
547 T: Integer,
548 U: Integer,
549 T: PartialOrd<U>,
550{
551 fn partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering> {
552 self.get().partial_cmp(&other.get())
553 }
554}
555
556impl<T, const N: u32> Ord for Bounded<T, N>
557where
558 T: Integer,
559 T: Ord,
560{
561 fn cmp(&self, other: &Self) -> cmp::Ordering {
562 self.get().cmp(&other.get())
563 }
564}
565
566// Comparisons between a `Bounded` and its backing type.
567
568impl<T, const N: u32> PartialEq<T> for Bounded<T, N>
569where
570 T: Integer,
571 T: PartialEq,
572{
573 fn eq(&self, other: &T) -> bool {
574 self.get() == *other
575 }
576}
577
578impl<T, const N: u32> PartialOrd<T> for Bounded<T, N>
579where
580 T: Integer,
581 T: PartialOrd,
582{
583 fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
584 self.get().partial_cmp(other)
585 }
586}
587
588// Implementations of `core::ops` for two `Bounded` with the same backing type.
589
590impl<T, const N: u32, const M: u32> ops::Add<Bounded<T, M>> for Bounded<T, N>
591where
592 T: Integer,
593 T: ops::Add<Output = T>,
594{
595 type Output = T;
596
597 fn add(self, rhs: Bounded<T, M>) -> Self::Output {
598 self.get() + rhs.get()
599 }
600}
601
602impl<T, const N: u32, const M: u32> ops::BitAnd<Bounded<T, M>> for Bounded<T, N>
603where
604 T: Integer,
605 T: ops::BitAnd<Output = T>,
606{
607 type Output = T;
608
609 fn bitand(self, rhs: Bounded<T, M>) -> Self::Output {
610 self.get() & rhs.get()
611 }
612}
613
614impl<T, const N: u32, const M: u32> ops::BitOr<Bounded<T, M>> for Bounded<T, N>
615where
616 T: Integer,
617 T: ops::BitOr<Output = T>,
618{
619 type Output = T;
620
621 fn bitor(self, rhs: Bounded<T, M>) -> Self::Output {
622 self.get() | rhs.get()
623 }
624}
625
626impl<T, const N: u32, const M: u32> ops::BitXor<Bounded<T, M>> for Bounded<T, N>
627where
628 T: Integer,
629 T: ops::BitXor<Output = T>,
630{
631 type Output = T;
632
633 fn bitxor(self, rhs: Bounded<T, M>) -> Self::Output {
634 self.get() ^ rhs.get()
635 }
636}
637
638impl<T, const N: u32, const M: u32> ops::Div<Bounded<T, M>> for Bounded<T, N>
639where
640 T: Integer,
641 T: ops::Div<Output = T>,
642{
643 type Output = T;
644
645 fn div(self, rhs: Bounded<T, M>) -> Self::Output {
646 self.get() / rhs.get()
647 }
648}
649
650impl<T, const N: u32, const M: u32> ops::Mul<Bounded<T, M>> for Bounded<T, N>
651where
652 T: Integer,
653 T: ops::Mul<Output = T>,
654{
655 type Output = T;
656
657 fn mul(self, rhs: Bounded<T, M>) -> Self::Output {
658 self.get() * rhs.get()
659 }
660}
661
662impl<T, const N: u32, const M: u32> ops::Rem<Bounded<T, M>> for Bounded<T, N>
663where
664 T: Integer,
665 T: ops::Rem<Output = T>,
666{
667 type Output = T;
668
669 fn rem(self, rhs: Bounded<T, M>) -> Self::Output {
670 self.get() % rhs.get()
671 }
672}
673
674impl<T, const N: u32, const M: u32> ops::Sub<Bounded<T, M>> for Bounded<T, N>
675where
676 T: Integer,
677 T: ops::Sub<Output = T>,
678{
679 type Output = T;
680
681 fn sub(self, rhs: Bounded<T, M>) -> Self::Output {
682 self.get() - rhs.get()
683 }
684}
685
686// Implementations of `core::ops` between a `Bounded` and its backing type.
687
688impl<T, const N: u32> ops::Add<T> for Bounded<T, N>
689where
690 T: Integer,
691 T: ops::Add<Output = T>,
692{
693 type Output = T;
694
695 fn add(self, rhs: T) -> Self::Output {
696 self.get() + rhs
697 }
698}
699
700impl<T, const N: u32> ops::BitAnd<T> for Bounded<T, N>
701where
702 T: Integer,
703 T: ops::BitAnd<Output = T>,
704{
705 type Output = T;
706
707 fn bitand(self, rhs: T) -> Self::Output {
708 self.get() & rhs
709 }
710}
711
712impl<T, const N: u32> ops::BitOr<T> for Bounded<T, N>
713where
714 T: Integer,
715 T: ops::BitOr<Output = T>,
716{
717 type Output = T;
718
719 fn bitor(self, rhs: T) -> Self::Output {
720 self.get() | rhs
721 }
722}
723
724impl<T, const N: u32> ops::BitXor<T> for Bounded<T, N>
725where
726 T: Integer,
727 T: ops::BitXor<Output = T>,
728{
729 type Output = T;
730
731 fn bitxor(self, rhs: T) -> Self::Output {
732 self.get() ^ rhs
733 }
734}
735
736impl<T, const N: u32> ops::Div<T> for Bounded<T, N>
737where
738 T: Integer,
739 T: ops::Div<Output = T>,
740{
741 type Output = T;
742
743 fn div(self, rhs: T) -> Self::Output {
744 self.get() / rhs
745 }
746}
747
748impl<T, const N: u32> ops::Mul<T> for Bounded<T, N>
749where
750 T: Integer,
751 T: ops::Mul<Output = T>,
752{
753 type Output = T;
754
755 fn mul(self, rhs: T) -> Self::Output {
756 self.get() * rhs
757 }
758}
759
760impl<T, const N: u32> ops::Neg for Bounded<T, N>
761where
762 T: Integer,
763 T: ops::Neg<Output = T>,
764{
765 type Output = T;
766
767 fn neg(self) -> Self::Output {
768 -self.get()
769 }
770}
771
772impl<T, const N: u32> ops::Not for Bounded<T, N>
773where
774 T: Integer,
775 T: ops::Not<Output = T>,
776{
777 type Output = T;
778
779 fn not(self) -> Self::Output {
780 !self.get()
781 }
782}
783
784impl<T, const N: u32> ops::Rem<T> for Bounded<T, N>
785where
786 T: Integer,
787 T: ops::Rem<Output = T>,
788{
789 type Output = T;
790
791 fn rem(self, rhs: T) -> Self::Output {
792 self.get() % rhs
793 }
794}
795
796impl<T, const N: u32> ops::Sub<T> for Bounded<T, N>
797where
798 T: Integer,
799 T: ops::Sub<Output = T>,
800{
801 type Output = T;
802
803 fn sub(self, rhs: T) -> Self::Output {
804 self.get() - rhs
805 }
806}
807
808// Proxy implementations of `core::fmt`.
809
810impl<T, const N: u32> fmt::Display for Bounded<T, N>
811where
812 T: Integer,
813 T: fmt::Display,
814{
815 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
816 self.get().fmt(f)
817 }
818}
819
820impl<T, const N: u32> fmt::Binary for Bounded<T, N>
821where
822 T: Integer,
823 T: fmt::Binary,
824{
825 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
826 self.get().fmt(f)
827 }
828}
829
830impl<T, const N: u32> fmt::LowerExp for Bounded<T, N>
831where
832 T: Integer,
833 T: fmt::LowerExp,
834{
835 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
836 self.get().fmt(f)
837 }
838}
839
840impl<T, const N: u32> fmt::LowerHex for Bounded<T, N>
841where
842 T: Integer,
843 T: fmt::LowerHex,
844{
845 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
846 self.get().fmt(f)
847 }
848}
849
850impl<T, const N: u32> fmt::Octal for Bounded<T, N>
851where
852 T: Integer,
853 T: fmt::Octal,
854{
855 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
856 self.get().fmt(f)
857 }
858}
859
860impl<T, const N: u32> fmt::UpperExp for Bounded<T, N>
861where
862 T: Integer,
863 T: fmt::UpperExp,
864{
865 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
866 self.get().fmt(f)
867 }
868}
869
870impl<T, const N: u32> fmt::UpperHex for Bounded<T, N>
871where
872 T: Integer,
873 T: fmt::UpperHex,
874{
875 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
876 self.get().fmt(f)
877 }
878}
879
880/// Implements `$trait` for all [`Bounded`] types represented using `$num_bits`.
881///
882/// This is used to declare size properties as traits that we can constrain against in impl blocks.
883macro_rules! impl_size_rule {
884 ($trait:ty, $($num_bits:literal)*) => {
885 $(
886 impl<T> $trait for Bounded<T, $num_bits> where T: Integer {}
887 )*
888 };
889}
890
891/// Local trait expressing the fact that a given [`Bounded`] has at least `N` bits used for value
892/// representation.
893trait AtLeastXBits<const N: usize> {}
894
895/// Implementations for infallibly converting a primitive type into a [`Bounded`] that can contain
896/// it.
897///
898/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
899/// module.
900mod atleast_impls {
901 use super::*;
902
903 // Number of bits at least as large as 64.
904 impl_size_rule!(AtLeastXBits<64>, 64);
905
906 // Anything 64 bits or more is also larger than 32.
907 impl<T> AtLeastXBits<32> for T where T: AtLeastXBits<64> {}
908 // Other numbers of bits at least as large as 32.
909 impl_size_rule!(AtLeastXBits<32>,
910 32 33 34 35 36 37 38 39
911 40 41 42 43 44 45 46 47
912 48 49 50 51 52 53 54 55
913 56 57 58 59 60 61 62 63
914 );
915
916 // Anything 32 bits or more is also larger than 16.
917 impl<T> AtLeastXBits<16> for T where T: AtLeastXBits<32> {}
918 // Other numbers of bits at least as large as 16.
919 impl_size_rule!(AtLeastXBits<16>,
920 16 17 18 19 20 21 22 23
921 24 25 26 27 28 29 30 31
922 );
923
924 // Anything 16 bits or more is also larger than 8.
925 impl<T> AtLeastXBits<8> for T where T: AtLeastXBits<16> {}
926 // Other numbers of bits at least as large as 8.
927 impl_size_rule!(AtLeastXBits<8>, 8 9 10 11 12 13 14 15);
928}
929
930/// Generates `From` implementations from a primitive type into a [`Bounded`] with
931/// enough bits to store any value of that type.
932///
933/// Note: The only reason for having this macro is that if we pass `$type` as a generic
934/// parameter, we cannot use it in the const context of [`AtLeastXBits`]'s generic parameter. This
935/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
936/// regular `impl` block.
937macro_rules! impl_from_primitive {
938 ($($type:ty)*) => {
939 $(
940 #[doc = ::core::concat!(
941 "Conversion from a [`",
942 ::core::stringify!($type),
943 "`] into a [`Bounded`] of same signedness with enough bits to store it.")]
944 impl<T, const N: u32> From<$type> for Bounded<T, N>
945 where
946 $type: Integer,
947 T: Integer<Signedness = <$type as Integer>::Signedness> + From<$type>,
948 Self: AtLeastXBits<{ <$type as Integer>::BITS as usize }>,
949 {
950 fn from(value: $type) -> Self {
951 // SAFETY: The trait bound on `Self` guarantees that `N` bits is
952 // enough to hold any value of the source type.
953 unsafe { Self::__new(T::from(value)) }
954 }
955 }
956 )*
957 }
958}
959
960impl_from_primitive!(
961 u8 u16 u32 u64 usize
962 i8 i16 i32 i64 isize
963);
964
965/// Local trait expressing the fact that a given [`Bounded`] fits into a primitive type of `N` bits,
966/// provided they have the same signedness.
967trait FitsInXBits<const N: usize> {}
968
969/// Implementations for infallibly converting a [`Bounded`] into a primitive type that can contain
970/// it.
971///
972/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
973/// module.
974mod fits_impls {
975 use super::*;
976
977 // Number of bits that fit into a 8-bits primitive.
978 impl_size_rule!(FitsInXBits<8>, 1 2 3 4 5 6 7 8);
979
980 // Anything that fits into 8 bits also fits into 16.
981 impl<T> FitsInXBits<16> for T where T: FitsInXBits<8> {}
982 // Other number of bits that fit into a 16-bits primitive.
983 impl_size_rule!(FitsInXBits<16>, 9 10 11 12 13 14 15 16);
984
985 // Anything that fits into 16 bits also fits into 32.
986 impl<T> FitsInXBits<32> for T where T: FitsInXBits<16> {}
987 // Other number of bits that fit into a 32-bits primitive.
988 impl_size_rule!(FitsInXBits<32>,
989 17 18 19 20 21 22 23 24
990 25 26 27 28 29 30 31 32
991 );
992
993 // Anything that fits into 32 bits also fits into 64.
994 impl<T> FitsInXBits<64> for T where T: FitsInXBits<32> {}
995 // Other number of bits that fit into a 64-bits primitive.
996 impl_size_rule!(FitsInXBits<64>,
997 33 34 35 36 37 38 39 40
998 41 42 43 44 45 46 47 48
999 49 50 51 52 53 54 55 56
1000 57 58 59 60 61 62 63 64
1001 );
1002}
1003
1004/// Generates [`From`] implementations from a [`Bounded`] into a primitive type that is
1005/// guaranteed to contain it.
1006///
1007/// Note: The only reason for having this macro is that if we pass `$type` as a generic
1008/// parameter, we cannot use it in the const context of `AtLeastXBits`'s generic parameter. This
1009/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
1010/// regular `impl` block.
1011macro_rules! impl_into_primitive {
1012 ($($type:ty)*) => {
1013 $(
1014 #[doc = ::core::concat!(
1015 "Conversion from a [`Bounded`] with no more bits than a [`",
1016 ::core::stringify!($type),
1017 "`] and of same signedness into [`",
1018 ::core::stringify!($type),
1019 "`]")]
1020 impl<T, const N: u32> From<Bounded<T, N>> for $type
1021 where
1022 $type: Integer + TryFrom<T>,
1023 T: Integer<Signedness = <$type as Integer>::Signedness>,
1024 Bounded<T, N>: FitsInXBits<{ <$type as Integer>::BITS as usize }>,
1025 {
1026 fn from(value: Bounded<T, N>) -> $type {
1027 // SAFETY: The trait bound on `Bounded` ensures that any value it holds (which
1028 // is constrained to `N` bits) can fit into the destination type, so this
1029 // conversion cannot fail.
1030 unsafe { <$type>::try_from(value.get()).unwrap_unchecked() }
1031 }
1032 }
1033 )*
1034 }
1035}
1036
1037impl_into_primitive!(
1038 u8 u16 u32 u64 usize
1039 i8 i16 i32 i64 isize
1040);
1041
1042// Single-bit `Bounded`s can be converted from/to a boolean.
1043
1044impl<T> From<Bounded<T, 1>> for bool
1045where
1046 T: Integer + Zeroable,
1047{
1048 fn from(value: Bounded<T, 1>) -> Self {
1049 value.get() != Zeroable::zeroed()
1050 }
1051}
1052
1053impl<T, const N: u32> From<bool> for Bounded<T, N>
1054where
1055 T: Integer + From<bool>,
1056{
1057 fn from(value: bool) -> Self {
1058 // SAFETY: A boolean can be represented using a single bit, and thus fits within any
1059 // integer type for any `N` > 0.
1060 unsafe { Self::__new(T::from(value)) }
1061 }
1062}