kernel/num/
bounded.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Implementation of [`Bounded`], a wrapper around integer types limiting the number of bits
4//! usable for value representation.
5
6use core::{
7    cmp,
8    fmt,
9    ops::{
10        self,
11        Deref, //
12    }, //,
13};
14
15use kernel::{
16    num::Integer,
17    prelude::*, //
18};
19
20/// Evaluates to `true` if `$value` can be represented using at most `$n` bits in a `$type`.
21///
22/// `expr` must be of type `type`, or the result will be incorrect.
23///
24/// Can be used in const context.
25macro_rules! fits_within {
26    ($value:expr, $type:ty, $n:expr) => {{
27        let shift: u32 = <$type>::BITS - $n;
28
29        // `value` fits within `$n` bits if shifting it left by the number of unused bits, then
30        // right by the same number, doesn't change it.
31        //
32        // This method has the benefit of working for both unsigned and signed values.
33        ($value << shift) >> shift == $value
34    }};
35}
36
37/// Returns `true` if `value` can be represented with at most `N` bits in a `T`.
38#[inline(always)]
39fn fits_within<T: Integer>(value: T, num_bits: u32) -> bool {
40    fits_within!(value, T, num_bits)
41}
42
43/// An integer value that requires only the `N` least significant bits of the wrapped type to be
44/// encoded.
45///
46/// This limits the number of usable bits in the wrapped integer type, and thus the stored value to
47/// a narrower range, which provides guarantees that can be useful when working within e.g.
48/// bitfields.
49///
50/// # Invariants
51///
52/// - `N` is greater than `0`.
53/// - `N` is less than or equal to `T::BITS`.
54/// - Stored values can be represented with at most `N` bits.
55///
56/// # Examples
57///
58/// The preferred way to create values is through constants and the [`Bounded::new`] family of
59/// constructors, as they trigger a build error if the type invariants cannot be upheld.
60///
61/// ```
62/// use kernel::num::Bounded;
63///
64/// // An unsigned 8-bit integer, of which only the 4 LSBs are used.
65/// // The value `15` is statically validated to fit that constraint at build time.
66/// let v = Bounded::<u8, 4>::new::<15>();
67/// assert_eq!(v.get(), 15);
68///
69/// // Same using signed values.
70/// let v = Bounded::<i8, 4>::new::<-8>();
71/// assert_eq!(v.get(), -8);
72///
73/// // This doesn't build: a `u8` is smaller than the requested 9 bits.
74/// // let _ = Bounded::<u8, 9>::new::<10>();
75///
76/// // This also doesn't build: the requested value doesn't fit within 4 signed bits.
77/// // let _ = Bounded::<i8, 4>::new::<8>();
78/// ```
79///
80/// Values can also be validated at runtime with [`Bounded::try_new`].
81///
82/// ```
83/// use kernel::num::Bounded;
84///
85/// // This succeeds because `15` can be represented with 4 unsigned bits.
86/// assert!(Bounded::<u8, 4>::try_new(15).is_some());
87///
88/// // This fails because `16` cannot be represented with 4 unsigned bits.
89/// assert!(Bounded::<u8, 4>::try_new(16).is_none());
90/// ```
91///
92/// Non-constant expressions can be validated at build-time thanks to compiler optimizations. This
93/// should be used with caution, on simple expressions only.
94///
95/// ```
96/// use kernel::num::Bounded;
97/// # fn some_number() -> u32 { 0xffffffff }
98///
99/// // Here the compiler can infer from the mask that the type invariants are not violated, even
100/// // though the value returned by `some_number` is not statically known.
101/// let v = Bounded::<u32, 4>::from_expr(some_number() & 0xf);
102/// ```
103///
104/// Comparison and arithmetic operations are supported on [`Bounded`]s with a compatible backing
105/// type, regardless of their number of valid bits.
106///
107/// ```
108/// use kernel::num::Bounded;
109///
110/// let v1 = Bounded::<u32, 8>::new::<4>();
111/// let v2 = Bounded::<u32, 4>::new::<15>();
112///
113/// assert!(v1 != v2);
114/// assert!(v1 < v2);
115/// assert_eq!(v1 + v2, 19);
116/// assert_eq!(v2 % v1, 3);
117/// ```
118///
119/// These operations are also supported between a [`Bounded`] and its backing type.
120///
121/// ```
122/// use kernel::num::Bounded;
123///
124/// let v = Bounded::<u8, 4>::new::<15>();
125///
126/// assert!(v == 15);
127/// assert!(v > 12);
128/// assert_eq!(v + 5, 20);
129/// assert_eq!(v / 3, 5);
130/// ```
131///
132/// A change of backing types is possible using [`Bounded::cast`], and the number of valid bits can
133/// be extended or reduced with [`Bounded::extend`] and [`Bounded::try_shrink`].
134///
135/// ```
136/// use kernel::num::Bounded;
137///
138/// let v = Bounded::<u32, 12>::new::<127>();
139///
140/// // Changes backing type from `u32` to `u16`.
141/// let _: Bounded<u16, 12> = v.cast();
142///
143/// // This does not build, as `u8` is smaller than 12 bits.
144/// // let _: Bounded<u8, 12> = v.cast();
145///
146/// // We can safely extend the number of bits...
147/// let _ = v.extend::<15>();
148///
149/// // ... to the limits of the backing type. This doesn't build as a `u32` cannot contain 33 bits.
150/// // let _ = v.extend::<33>();
151///
152/// // Reducing the number of bits is validated at runtime. This works because `127` can be
153/// // represented with 8 bits.
154/// assert!(v.try_shrink::<8>().is_some());
155///
156/// // ... but not with 6, so this fails.
157/// assert!(v.try_shrink::<6>().is_none());
158/// ```
159///
160/// Infallible conversions from a primitive integer to a large-enough [`Bounded`] are supported.
161///
162/// ```
163/// use kernel::num::Bounded;
164///
165/// // This unsigned `Bounded` has 8 bits, so it can represent any `u8`.
166/// let v = Bounded::<u32, 8>::from(128u8);
167/// assert_eq!(v.get(), 128);
168///
169/// // This signed `Bounded` has 8 bits, so it can represent any `i8`.
170/// let v = Bounded::<i32, 8>::from(-128i8);
171/// assert_eq!(v.get(), -128);
172///
173/// // This doesn't build, as this 6-bit `Bounded` does not have enough capacity to represent a
174/// // `u8` (regardless of the passed value).
175/// // let _ = Bounded::<u32, 6>::from(10u8);
176///
177/// // Booleans can be converted into single-bit `Bounded`s.
178///
179/// let v = Bounded::<u64, 1>::from(false);
180/// assert_eq!(v.get(), 0);
181///
182/// let v = Bounded::<u64, 1>::from(true);
183/// assert_eq!(v.get(), 1);
184/// ```
185///
186/// Infallible conversions from a [`Bounded`] to a primitive integer are also supported, and
187/// dependent on the number of bits used for value representation, not on the backing type.
188///
189/// ```
190/// use kernel::num::Bounded;
191///
192/// // Even though its backing type is `u32`, this `Bounded` only uses 6 bits and thus can safely
193/// // be converted to a `u8`.
194/// let v = Bounded::<u32, 6>::new::<63>();
195/// assert_eq!(u8::from(v), 63);
196///
197/// // Same using signed values.
198/// let v = Bounded::<i32, 8>::new::<-128>();
199/// assert_eq!(i8::from(v), -128);
200///
201/// // This however does not build, as 10 bits won't fit into a `u8` (regardless of the actually
202/// // contained value).
203/// let _v = Bounded::<u32, 10>::new::<10>();
204/// // assert_eq!(u8::from(_v), 10);
205///
206/// // Single-bit `Bounded`s can be converted into a boolean.
207/// let v = Bounded::<u8, 1>::new::<1>();
208/// assert_eq!(bool::from(v), true);
209///
210/// let v = Bounded::<u8, 1>::new::<0>();
211/// assert_eq!(bool::from(v), false);
212/// ```
213///
214/// Fallible conversions from any primitive integer to any [`Bounded`] are also supported using the
215/// [`TryIntoBounded`] trait.
216///
217/// ```
218/// use kernel::num::{Bounded, TryIntoBounded};
219///
220/// // Succeeds because `128` fits into 8 bits.
221/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
222/// assert_eq!(v.as_deref().copied(), Some(128));
223///
224/// // Fails because `128` doesn't fit into 6 bits.
225/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
226/// assert_eq!(v, None);
227/// ```
228#[repr(transparent)]
229#[derive(Clone, Copy, Debug, Default, Hash)]
230pub struct Bounded<T: Integer, const N: u32>(T);
231
232/// Validating the value as a const expression cannot be done as a regular method, as the
233/// arithmetic operations we rely on to check the bounds are not const. Thus, implement
234/// [`Bounded::new`] using a macro.
235macro_rules! impl_const_new {
236    ($($type:ty)*) => {
237        $(
238        impl<const N: u32> Bounded<$type, N> {
239            /// Creates a [`Bounded`] for the constant `VALUE`.
240            ///
241            /// Fails at build time if `VALUE` cannot be represented with `N` bits.
242            ///
243            /// This method should be preferred to [`Self::from_expr`] whenever possible.
244            ///
245            /// # Examples
246            ///
247            /// ```
248            /// use kernel::num::Bounded;
249            ///
250            #[doc = ::core::concat!(
251                "let v = Bounded::<",
252                ::core::stringify!($type),
253                ", 4>::new::<7>();")]
254            /// assert_eq!(v.get(), 7);
255            /// ```
256            pub const fn new<const VALUE: $type>() -> Self {
257                // Statically assert that `VALUE` fits within the set number of bits.
258                const {
259                    assert!(fits_within!(VALUE, $type, N));
260                }
261
262                // SAFETY: `fits_within` confirmed that `VALUE` can be represented within
263                // `N` bits.
264                unsafe { Self::__new(VALUE) }
265            }
266        }
267        )*
268    };
269}
270
271impl_const_new!(
272    u8 u16 u32 u64 usize
273    i8 i16 i32 i64 isize
274);
275
276impl<T, const N: u32> Bounded<T, N>
277where
278    T: Integer,
279{
280    /// Private constructor enforcing the type invariants.
281    ///
282    /// All instances of [`Bounded`] must be created through this method as it enforces most of the
283    /// type invariants.
284    ///
285    /// The caller remains responsible for checking, either statically or dynamically, that `value`
286    /// can be represented as a `T` using at most `N` bits.
287    ///
288    /// # Safety
289    ///
290    /// The caller must ensure that `value` can be represented within `N` bits.
291    const unsafe fn __new(value: T) -> Self {
292        // Enforce the type invariants.
293        const {
294            // `N` cannot be zero.
295            assert!(N != 0);
296            // The backing type is at least as large as `N` bits.
297            assert!(N <= T::BITS);
298        }
299
300        Self(value)
301    }
302
303    /// Attempts to turn `value` into a `Bounded` using `N` bits.
304    ///
305    /// Returns [`None`] if `value` doesn't fit within `N` bits.
306    ///
307    /// # Examples
308    ///
309    /// ```
310    /// use kernel::num::Bounded;
311    ///
312    /// let v = Bounded::<u8, 1>::try_new(1);
313    /// assert_eq!(v.as_deref().copied(), Some(1));
314    ///
315    /// let v = Bounded::<i8, 4>::try_new(-2);
316    /// assert_eq!(v.as_deref().copied(), Some(-2));
317    ///
318    /// // `0x1ff` doesn't fit into 8 unsigned bits.
319    /// let v = Bounded::<u32, 8>::try_new(0x1ff);
320    /// assert_eq!(v, None);
321    ///
322    /// // The range of values representable with 4 bits is `[-8..=7]`. The following tests these
323    /// // limits.
324    /// let v = Bounded::<i8, 4>::try_new(-8);
325    /// assert_eq!(v.map(Bounded::get), Some(-8));
326    /// let v = Bounded::<i8, 4>::try_new(-9);
327    /// assert_eq!(v, None);
328    /// let v = Bounded::<i8, 4>::try_new(7);
329    /// assert_eq!(v.map(Bounded::get), Some(7));
330    /// let v = Bounded::<i8, 4>::try_new(8);
331    /// assert_eq!(v, None);
332    /// ```
333    pub fn try_new(value: T) -> Option<Self> {
334        fits_within(value, N).then(|| {
335            // SAFETY: `fits_within` confirmed that `value` can be represented within `N` bits.
336            unsafe { Self::__new(value) }
337        })
338    }
339
340    /// Checks that `expr` is valid for this type at compile-time and build a new value.
341    ///
342    /// This relies on [`build_assert!`] and guaranteed optimization to perform validation at
343    /// compile-time. If `expr` cannot be proved to be within the requested bounds at compile-time,
344    /// use the fallible [`Self::try_new`] instead.
345    ///
346    /// Limit this to simple, easily provable expressions, and prefer one of the [`Self::new`]
347    /// constructors whenever possible as they statically validate the value instead of relying on
348    /// compiler optimizations.
349    ///
350    /// # Examples
351    ///
352    /// ```
353    /// use kernel::num::Bounded;
354    /// # fn some_number() -> u32 { 0xffffffff }
355    ///
356    /// // Some undefined number.
357    /// let v: u32 = some_number();
358    ///
359    /// // Triggers a build error as `v` cannot be asserted to fit within 4 bits...
360    /// // let _ = Bounded::<u32, 4>::from_expr(v);
361    ///
362    /// // ... but this works as the compiler can assert the range from the mask.
363    /// let _ = Bounded::<u32, 4>::from_expr(v & 0xf);
364    ///
365    /// // These expressions are simple enough to be proven correct, but since they are static the
366    /// // `new` constructor should be preferred.
367    /// assert_eq!(Bounded::<u8, 1>::from_expr(1).get(), 1);
368    /// assert_eq!(Bounded::<u16, 8>::from_expr(0xff).get(), 0xff);
369    /// ```
370    #[inline(always)]
371    pub fn from_expr(expr: T) -> Self {
372        crate::build_assert!(
373            fits_within(expr, N),
374            "Requested value larger than maximal representable value."
375        );
376
377        // SAFETY: `fits_within` confirmed that `expr` can be represented within `N` bits.
378        unsafe { Self::__new(expr) }
379    }
380
381    /// Returns the wrapped value as the backing type.
382    ///
383    /// # Examples
384    ///
385    /// ```
386    /// use kernel::num::Bounded;
387    ///
388    /// let v = Bounded::<u32, 4>::new::<7>();
389    /// assert_eq!(v.get(), 7u32);
390    /// ```
391    pub fn get(self) -> T {
392        *self.deref()
393    }
394
395    /// Increases the number of bits usable for `self`.
396    ///
397    /// This operation cannot fail.
398    ///
399    /// # Examples
400    ///
401    /// ```
402    /// use kernel::num::Bounded;
403    ///
404    /// let v = Bounded::<u32, 4>::new::<7>();
405    /// let larger_v = v.extend::<12>();
406    /// // The contained values are equal even though `larger_v` has a bigger capacity.
407    /// assert_eq!(larger_v, v);
408    /// ```
409    pub const fn extend<const M: u32>(self) -> Bounded<T, M> {
410        const {
411            assert!(
412                M >= N,
413                "Requested number of bits is less than the current representation."
414            );
415        }
416
417        // SAFETY: The value did fit within `N` bits, so it will all the more fit within
418        // the larger `M` bits.
419        unsafe { Bounded::__new(self.0) }
420    }
421
422    /// Attempts to shrink the number of bits usable for `self`.
423    ///
424    /// Returns [`None`] if the value of `self` cannot be represented within `M` bits.
425    ///
426    /// # Examples
427    ///
428    /// ```
429    /// use kernel::num::Bounded;
430    ///
431    /// let v = Bounded::<u32, 12>::new::<7>();
432    ///
433    /// // `7` can be represented using 3 unsigned bits...
434    /// let smaller_v = v.try_shrink::<3>();
435    /// assert_eq!(smaller_v.as_deref().copied(), Some(7));
436    ///
437    /// // ... but doesn't fit within `2` bits.
438    /// assert_eq!(v.try_shrink::<2>(), None);
439    /// ```
440    pub fn try_shrink<const M: u32>(self) -> Option<Bounded<T, M>> {
441        Bounded::<T, M>::try_new(self.get())
442    }
443
444    /// Casts `self` into a [`Bounded`] backed by a different storage type, but using the same
445    /// number of valid bits.
446    ///
447    /// Both `T` and `U` must be of same signedness, and `U` must be at least as large as
448    /// `N` bits, or a build error will occur.
449    ///
450    /// # Examples
451    ///
452    /// ```
453    /// use kernel::num::Bounded;
454    ///
455    /// let v = Bounded::<u32, 12>::new::<127>();
456    ///
457    /// let u16_v: Bounded<u16, 12> = v.cast();
458    /// assert_eq!(u16_v.get(), 127);
459    ///
460    /// // This won't build: a `u8` is smaller than the required 12 bits.
461    /// // let _: Bounded<u8, 12> = v.cast();
462    /// ```
463    pub fn cast<U>(self) -> Bounded<U, N>
464    where
465        U: TryFrom<T> + Integer,
466        T: Integer,
467        U: Integer<Signedness = T::Signedness>,
468    {
469        // SAFETY: The converted value is represented using `N` bits, `U` can contain `N` bits, and
470        // `U` and `T` have the same sign, hence this conversion cannot fail.
471        let value = unsafe { U::try_from(self.get()).unwrap_unchecked() };
472
473        // SAFETY: Although the backing type has changed, the value is still represented within
474        // `N` bits, and with the same signedness.
475        unsafe { Bounded::__new(value) }
476    }
477}
478
479impl<T, const N: u32> Deref for Bounded<T, N>
480where
481    T: Integer,
482{
483    type Target = T;
484
485    fn deref(&self) -> &Self::Target {
486        // Enforce the invariant to inform the compiler of the bounds of the value.
487        if !fits_within(self.0, N) {
488            // SAFETY: Per the `Bounded` invariants, `fits_within` can never return `false` on the
489            // value of a valid instance.
490            unsafe { core::hint::unreachable_unchecked() }
491        }
492
493        &self.0
494    }
495}
496
497/// Trait similar to [`TryInto`] but for [`Bounded`], to avoid conflicting implementations.
498///
499/// # Examples
500///
501/// ```
502/// use kernel::num::{Bounded, TryIntoBounded};
503///
504/// // Succeeds because `128` fits into 8 bits.
505/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
506/// assert_eq!(v.as_deref().copied(), Some(128));
507///
508/// // Fails because `128` doesn't fit into 6 bits.
509/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
510/// assert_eq!(v, None);
511/// ```
512pub trait TryIntoBounded<T: Integer, const N: u32> {
513    /// Attempts to convert `self` into a [`Bounded`] using `N` bits.
514    ///
515    /// Returns [`None`] if `self` does not fit into the target type.
516    fn try_into_bounded(self) -> Option<Bounded<T, N>>;
517}
518
519/// Any integer value can be attempted to be converted into a [`Bounded`] of any size.
520impl<T, U, const N: u32> TryIntoBounded<T, N> for U
521where
522    T: Integer,
523    U: TryInto<T>,
524{
525    fn try_into_bounded(self) -> Option<Bounded<T, N>> {
526        self.try_into().ok().and_then(Bounded::try_new)
527    }
528}
529
530// Comparisons between `Bounded`s.
531
532impl<T, U, const N: u32, const M: u32> PartialEq<Bounded<U, M>> for Bounded<T, N>
533where
534    T: Integer,
535    U: Integer,
536    T: PartialEq<U>,
537{
538    fn eq(&self, other: &Bounded<U, M>) -> bool {
539        self.get() == other.get()
540    }
541}
542
543impl<T, const N: u32> Eq for Bounded<T, N> where T: Integer {}
544
545impl<T, U, const N: u32, const M: u32> PartialOrd<Bounded<U, M>> for Bounded<T, N>
546where
547    T: Integer,
548    U: Integer,
549    T: PartialOrd<U>,
550{
551    fn partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering> {
552        self.get().partial_cmp(&other.get())
553    }
554}
555
556impl<T, const N: u32> Ord for Bounded<T, N>
557where
558    T: Integer,
559    T: Ord,
560{
561    fn cmp(&self, other: &Self) -> cmp::Ordering {
562        self.get().cmp(&other.get())
563    }
564}
565
566// Comparisons between a `Bounded` and its backing type.
567
568impl<T, const N: u32> PartialEq<T> for Bounded<T, N>
569where
570    T: Integer,
571    T: PartialEq,
572{
573    fn eq(&self, other: &T) -> bool {
574        self.get() == *other
575    }
576}
577
578impl<T, const N: u32> PartialOrd<T> for Bounded<T, N>
579where
580    T: Integer,
581    T: PartialOrd,
582{
583    fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
584        self.get().partial_cmp(other)
585    }
586}
587
588// Implementations of `core::ops` for two `Bounded` with the same backing type.
589
590impl<T, const N: u32, const M: u32> ops::Add<Bounded<T, M>> for Bounded<T, N>
591where
592    T: Integer,
593    T: ops::Add<Output = T>,
594{
595    type Output = T;
596
597    fn add(self, rhs: Bounded<T, M>) -> Self::Output {
598        self.get() + rhs.get()
599    }
600}
601
602impl<T, const N: u32, const M: u32> ops::BitAnd<Bounded<T, M>> for Bounded<T, N>
603where
604    T: Integer,
605    T: ops::BitAnd<Output = T>,
606{
607    type Output = T;
608
609    fn bitand(self, rhs: Bounded<T, M>) -> Self::Output {
610        self.get() & rhs.get()
611    }
612}
613
614impl<T, const N: u32, const M: u32> ops::BitOr<Bounded<T, M>> for Bounded<T, N>
615where
616    T: Integer,
617    T: ops::BitOr<Output = T>,
618{
619    type Output = T;
620
621    fn bitor(self, rhs: Bounded<T, M>) -> Self::Output {
622        self.get() | rhs.get()
623    }
624}
625
626impl<T, const N: u32, const M: u32> ops::BitXor<Bounded<T, M>> for Bounded<T, N>
627where
628    T: Integer,
629    T: ops::BitXor<Output = T>,
630{
631    type Output = T;
632
633    fn bitxor(self, rhs: Bounded<T, M>) -> Self::Output {
634        self.get() ^ rhs.get()
635    }
636}
637
638impl<T, const N: u32, const M: u32> ops::Div<Bounded<T, M>> for Bounded<T, N>
639where
640    T: Integer,
641    T: ops::Div<Output = T>,
642{
643    type Output = T;
644
645    fn div(self, rhs: Bounded<T, M>) -> Self::Output {
646        self.get() / rhs.get()
647    }
648}
649
650impl<T, const N: u32, const M: u32> ops::Mul<Bounded<T, M>> for Bounded<T, N>
651where
652    T: Integer,
653    T: ops::Mul<Output = T>,
654{
655    type Output = T;
656
657    fn mul(self, rhs: Bounded<T, M>) -> Self::Output {
658        self.get() * rhs.get()
659    }
660}
661
662impl<T, const N: u32, const M: u32> ops::Rem<Bounded<T, M>> for Bounded<T, N>
663where
664    T: Integer,
665    T: ops::Rem<Output = T>,
666{
667    type Output = T;
668
669    fn rem(self, rhs: Bounded<T, M>) -> Self::Output {
670        self.get() % rhs.get()
671    }
672}
673
674impl<T, const N: u32, const M: u32> ops::Sub<Bounded<T, M>> for Bounded<T, N>
675where
676    T: Integer,
677    T: ops::Sub<Output = T>,
678{
679    type Output = T;
680
681    fn sub(self, rhs: Bounded<T, M>) -> Self::Output {
682        self.get() - rhs.get()
683    }
684}
685
686// Implementations of `core::ops` between a `Bounded` and its backing type.
687
688impl<T, const N: u32> ops::Add<T> for Bounded<T, N>
689where
690    T: Integer,
691    T: ops::Add<Output = T>,
692{
693    type Output = T;
694
695    fn add(self, rhs: T) -> Self::Output {
696        self.get() + rhs
697    }
698}
699
700impl<T, const N: u32> ops::BitAnd<T> for Bounded<T, N>
701where
702    T: Integer,
703    T: ops::BitAnd<Output = T>,
704{
705    type Output = T;
706
707    fn bitand(self, rhs: T) -> Self::Output {
708        self.get() & rhs
709    }
710}
711
712impl<T, const N: u32> ops::BitOr<T> for Bounded<T, N>
713where
714    T: Integer,
715    T: ops::BitOr<Output = T>,
716{
717    type Output = T;
718
719    fn bitor(self, rhs: T) -> Self::Output {
720        self.get() | rhs
721    }
722}
723
724impl<T, const N: u32> ops::BitXor<T> for Bounded<T, N>
725where
726    T: Integer,
727    T: ops::BitXor<Output = T>,
728{
729    type Output = T;
730
731    fn bitxor(self, rhs: T) -> Self::Output {
732        self.get() ^ rhs
733    }
734}
735
736impl<T, const N: u32> ops::Div<T> for Bounded<T, N>
737where
738    T: Integer,
739    T: ops::Div<Output = T>,
740{
741    type Output = T;
742
743    fn div(self, rhs: T) -> Self::Output {
744        self.get() / rhs
745    }
746}
747
748impl<T, const N: u32> ops::Mul<T> for Bounded<T, N>
749where
750    T: Integer,
751    T: ops::Mul<Output = T>,
752{
753    type Output = T;
754
755    fn mul(self, rhs: T) -> Self::Output {
756        self.get() * rhs
757    }
758}
759
760impl<T, const N: u32> ops::Neg for Bounded<T, N>
761where
762    T: Integer,
763    T: ops::Neg<Output = T>,
764{
765    type Output = T;
766
767    fn neg(self) -> Self::Output {
768        -self.get()
769    }
770}
771
772impl<T, const N: u32> ops::Not for Bounded<T, N>
773where
774    T: Integer,
775    T: ops::Not<Output = T>,
776{
777    type Output = T;
778
779    fn not(self) -> Self::Output {
780        !self.get()
781    }
782}
783
784impl<T, const N: u32> ops::Rem<T> for Bounded<T, N>
785where
786    T: Integer,
787    T: ops::Rem<Output = T>,
788{
789    type Output = T;
790
791    fn rem(self, rhs: T) -> Self::Output {
792        self.get() % rhs
793    }
794}
795
796impl<T, const N: u32> ops::Sub<T> for Bounded<T, N>
797where
798    T: Integer,
799    T: ops::Sub<Output = T>,
800{
801    type Output = T;
802
803    fn sub(self, rhs: T) -> Self::Output {
804        self.get() - rhs
805    }
806}
807
808// Proxy implementations of `core::fmt`.
809
810impl<T, const N: u32> fmt::Display for Bounded<T, N>
811where
812    T: Integer,
813    T: fmt::Display,
814{
815    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
816        self.get().fmt(f)
817    }
818}
819
820impl<T, const N: u32> fmt::Binary for Bounded<T, N>
821where
822    T: Integer,
823    T: fmt::Binary,
824{
825    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
826        self.get().fmt(f)
827    }
828}
829
830impl<T, const N: u32> fmt::LowerExp for Bounded<T, N>
831where
832    T: Integer,
833    T: fmt::LowerExp,
834{
835    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
836        self.get().fmt(f)
837    }
838}
839
840impl<T, const N: u32> fmt::LowerHex for Bounded<T, N>
841where
842    T: Integer,
843    T: fmt::LowerHex,
844{
845    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
846        self.get().fmt(f)
847    }
848}
849
850impl<T, const N: u32> fmt::Octal for Bounded<T, N>
851where
852    T: Integer,
853    T: fmt::Octal,
854{
855    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
856        self.get().fmt(f)
857    }
858}
859
860impl<T, const N: u32> fmt::UpperExp for Bounded<T, N>
861where
862    T: Integer,
863    T: fmt::UpperExp,
864{
865    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
866        self.get().fmt(f)
867    }
868}
869
870impl<T, const N: u32> fmt::UpperHex for Bounded<T, N>
871where
872    T: Integer,
873    T: fmt::UpperHex,
874{
875    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
876        self.get().fmt(f)
877    }
878}
879
880/// Implements `$trait` for all [`Bounded`] types represented using `$num_bits`.
881///
882/// This is used to declare size properties as traits that we can constrain against in impl blocks.
883macro_rules! impl_size_rule {
884    ($trait:ty, $($num_bits:literal)*) => {
885        $(
886        impl<T> $trait for Bounded<T, $num_bits> where T: Integer {}
887        )*
888    };
889}
890
891/// Local trait expressing the fact that a given [`Bounded`] has at least `N` bits used for value
892/// representation.
893trait AtLeastXBits<const N: usize> {}
894
895/// Implementations for infallibly converting a primitive type into a [`Bounded`] that can contain
896/// it.
897///
898/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
899/// module.
900mod atleast_impls {
901    use super::*;
902
903    // Number of bits at least as large as 64.
904    impl_size_rule!(AtLeastXBits<64>, 64);
905
906    // Anything 64 bits or more is also larger than 32.
907    impl<T> AtLeastXBits<32> for T where T: AtLeastXBits<64> {}
908    // Other numbers of bits at least as large as 32.
909    impl_size_rule!(AtLeastXBits<32>,
910        32 33 34 35 36 37 38 39
911        40 41 42 43 44 45 46 47
912        48 49 50 51 52 53 54 55
913        56 57 58 59 60 61 62 63
914    );
915
916    // Anything 32 bits or more is also larger than 16.
917    impl<T> AtLeastXBits<16> for T where T: AtLeastXBits<32> {}
918    // Other numbers of bits at least as large as 16.
919    impl_size_rule!(AtLeastXBits<16>,
920        16 17 18 19 20 21 22 23
921        24 25 26 27 28 29 30 31
922    );
923
924    // Anything 16 bits or more is also larger than 8.
925    impl<T> AtLeastXBits<8> for T where T: AtLeastXBits<16> {}
926    // Other numbers of bits at least as large as 8.
927    impl_size_rule!(AtLeastXBits<8>, 8 9 10 11 12 13 14 15);
928}
929
930/// Generates `From` implementations from a primitive type into a [`Bounded`] with
931/// enough bits to store any value of that type.
932///
933/// Note: The only reason for having this macro is that if we pass `$type` as a generic
934/// parameter, we cannot use it in the const context of [`AtLeastXBits`]'s generic parameter. This
935/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
936/// regular `impl` block.
937macro_rules! impl_from_primitive {
938    ($($type:ty)*) => {
939        $(
940        #[doc = ::core::concat!(
941            "Conversion from a [`",
942            ::core::stringify!($type),
943            "`] into a [`Bounded`] of same signedness with enough bits to store it.")]
944        impl<T, const N: u32> From<$type> for Bounded<T, N>
945        where
946            $type: Integer,
947            T: Integer<Signedness = <$type as Integer>::Signedness> + From<$type>,
948            Self: AtLeastXBits<{ <$type as Integer>::BITS as usize }>,
949        {
950            fn from(value: $type) -> Self {
951                // SAFETY: The trait bound on `Self` guarantees that `N` bits is
952                // enough to hold any value of the source type.
953                unsafe { Self::__new(T::from(value)) }
954            }
955        }
956        )*
957    }
958}
959
960impl_from_primitive!(
961    u8 u16 u32 u64 usize
962    i8 i16 i32 i64 isize
963);
964
965/// Local trait expressing the fact that a given [`Bounded`] fits into a primitive type of `N` bits,
966/// provided they have the same signedness.
967trait FitsInXBits<const N: usize> {}
968
969/// Implementations for infallibly converting a [`Bounded`] into a primitive type that can contain
970/// it.
971///
972/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
973/// module.
974mod fits_impls {
975    use super::*;
976
977    // Number of bits that fit into a 8-bits primitive.
978    impl_size_rule!(FitsInXBits<8>, 1 2 3 4 5 6 7 8);
979
980    // Anything that fits into 8 bits also fits into 16.
981    impl<T> FitsInXBits<16> for T where T: FitsInXBits<8> {}
982    // Other number of bits that fit into a 16-bits primitive.
983    impl_size_rule!(FitsInXBits<16>, 9 10 11 12 13 14 15 16);
984
985    // Anything that fits into 16 bits also fits into 32.
986    impl<T> FitsInXBits<32> for T where T: FitsInXBits<16> {}
987    // Other number of bits that fit into a 32-bits primitive.
988    impl_size_rule!(FitsInXBits<32>,
989        17 18 19 20 21 22 23 24
990        25 26 27 28 29 30 31 32
991    );
992
993    // Anything that fits into 32 bits also fits into 64.
994    impl<T> FitsInXBits<64> for T where T: FitsInXBits<32> {}
995    // Other number of bits that fit into a 64-bits primitive.
996    impl_size_rule!(FitsInXBits<64>,
997        33 34 35 36 37 38 39 40
998        41 42 43 44 45 46 47 48
999        49 50 51 52 53 54 55 56
1000        57 58 59 60 61 62 63 64
1001    );
1002}
1003
1004/// Generates [`From`] implementations from a [`Bounded`] into a primitive type that is
1005/// guaranteed to contain it.
1006///
1007/// Note: The only reason for having this macro is that if we pass `$type` as a generic
1008/// parameter, we cannot use it in the const context of `AtLeastXBits`'s generic parameter. This
1009/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
1010/// regular `impl` block.
1011macro_rules! impl_into_primitive {
1012    ($($type:ty)*) => {
1013        $(
1014        #[doc = ::core::concat!(
1015            "Conversion from a [`Bounded`] with no more bits than a [`",
1016            ::core::stringify!($type),
1017            "`] and of same signedness into [`",
1018            ::core::stringify!($type),
1019            "`]")]
1020        impl<T, const N: u32> From<Bounded<T, N>> for $type
1021        where
1022            $type: Integer + TryFrom<T>,
1023            T: Integer<Signedness = <$type as Integer>::Signedness>,
1024            Bounded<T, N>: FitsInXBits<{ <$type as Integer>::BITS as usize }>,
1025        {
1026            fn from(value: Bounded<T, N>) -> $type {
1027                // SAFETY: The trait bound on `Bounded` ensures that any value it holds (which
1028                // is constrained to `N` bits) can fit into the destination type, so this
1029                // conversion cannot fail.
1030                unsafe { <$type>::try_from(value.get()).unwrap_unchecked() }
1031            }
1032        }
1033        )*
1034    }
1035}
1036
1037impl_into_primitive!(
1038    u8 u16 u32 u64 usize
1039    i8 i16 i32 i64 isize
1040);
1041
1042// Single-bit `Bounded`s can be converted from/to a boolean.
1043
1044impl<T> From<Bounded<T, 1>> for bool
1045where
1046    T: Integer + Zeroable,
1047{
1048    fn from(value: Bounded<T, 1>) -> Self {
1049        value.get() != Zeroable::zeroed()
1050    }
1051}
1052
1053impl<T, const N: u32> From<bool> for Bounded<T, N>
1054where
1055    T: Integer + From<bool>,
1056{
1057    fn from(value: bool) -> Self {
1058        // SAFETY: A boolean can be represented using a single bit, and thus fits within any
1059        // integer type for any `N` > 0.
1060        unsafe { Self::__new(T::from(value)) }
1061    }
1062}