kernel/
dma.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Direct memory access (DMA).
4//!
5//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7use crate::{
8    bindings, build_assert,
9    device::{Bound, Device},
10    error::code::*,
11    error::Result,
12    transmute::{AsBytes, FromBytes},
13    types::ARef,
14};
15
16/// Possible attributes associated with a DMA mapping.
17///
18/// They can be combined with the operators `|`, `&`, and `!`.
19///
20/// Values can be used from the [`attrs`] module.
21///
22/// # Examples
23///
24/// ```
25/// # use kernel::device::{Bound, Device};
26/// use kernel::dma::{attrs::*, CoherentAllocation};
27///
28/// # fn test(dev: &Device<Bound>) -> Result {
29/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
30/// let c: CoherentAllocation<u64> =
31///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
32/// # Ok::<(), Error>(()) }
33/// ```
34#[derive(Clone, Copy, PartialEq)]
35#[repr(transparent)]
36pub struct Attrs(u32);
37
38impl Attrs {
39    /// Get the raw representation of this attribute.
40    pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
41        self.0 as crate::ffi::c_ulong
42    }
43
44    /// Check whether `flags` is contained in `self`.
45    pub fn contains(self, flags: Attrs) -> bool {
46        (self & flags) == flags
47    }
48}
49
50impl core::ops::BitOr for Attrs {
51    type Output = Self;
52    fn bitor(self, rhs: Self) -> Self::Output {
53        Self(self.0 | rhs.0)
54    }
55}
56
57impl core::ops::BitAnd for Attrs {
58    type Output = Self;
59    fn bitand(self, rhs: Self) -> Self::Output {
60        Self(self.0 & rhs.0)
61    }
62}
63
64impl core::ops::Not for Attrs {
65    type Output = Self;
66    fn not(self) -> Self::Output {
67        Self(!self.0)
68    }
69}
70
71/// DMA mapping attributes.
72pub mod attrs {
73    use super::Attrs;
74
75    /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
76    /// and writes may pass each other.
77    pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
78
79    /// Specifies that writes to the mapping may be buffered to improve performance.
80    pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
81
82    /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
83    pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
84
85    /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
86    /// that it has been already transferred to 'device' domain.
87    pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
88
89    /// Forces contiguous allocation of the buffer in physical memory.
90    pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
91
92    /// Hints DMA-mapping subsystem that it's probably not worth the time to try
93    /// to allocate memory to in a way that gives better TLB efficiency.
94    pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
95
96    /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
97    /// `__GFP_NOWARN`).
98    pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
99
100    /// Indicates that the buffer is fully accessible at an elevated privilege level (and
101    /// ideally inaccessible or at least read-only at lesser-privileged levels).
102    pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
103}
104
105/// An abstraction of the `dma_alloc_coherent` API.
106///
107/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
108/// large coherent DMA regions.
109///
110/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
111/// processor's virtual address space) and the device address which can be given to the device
112/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
113/// is dropped.
114///
115/// # Invariants
116///
117/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
118///   to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
119///   region.
120/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
121/// - `size_of::<T> * count` fits into a `usize`.
122// TODO
123//
124// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
125// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
126// that device resources can never survive device unbind.
127//
128// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
129// allocation from surviving device unbind; it would require RCU read side critical sections to
130// access the memory, which may require subsequent unnecessary copies.
131//
132// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
133// entire `CoherentAllocation` including the allocated memory itself.
134pub struct CoherentAllocation<T: AsBytes + FromBytes> {
135    dev: ARef<Device>,
136    dma_handle: bindings::dma_addr_t,
137    count: usize,
138    cpu_addr: *mut T,
139    dma_attrs: Attrs,
140}
141
142impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
143    /// Allocates a region of `size_of::<T> * count` of coherent memory.
144    ///
145    /// # Examples
146    ///
147    /// ```
148    /// # use kernel::device::{Bound, Device};
149    /// use kernel::dma::{attrs::*, CoherentAllocation};
150    ///
151    /// # fn test(dev: &Device<Bound>) -> Result {
152    /// let c: CoherentAllocation<u64> =
153    ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
154    /// # Ok::<(), Error>(()) }
155    /// ```
156    pub fn alloc_attrs(
157        dev: &Device<Bound>,
158        count: usize,
159        gfp_flags: kernel::alloc::Flags,
160        dma_attrs: Attrs,
161    ) -> Result<CoherentAllocation<T>> {
162        build_assert!(
163            core::mem::size_of::<T>() > 0,
164            "It doesn't make sense for the allocated type to be a ZST"
165        );
166
167        let size = count
168            .checked_mul(core::mem::size_of::<T>())
169            .ok_or(EOVERFLOW)?;
170        let mut dma_handle = 0;
171        // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
172        let ret = unsafe {
173            bindings::dma_alloc_attrs(
174                dev.as_raw(),
175                size,
176                &mut dma_handle,
177                gfp_flags.as_raw(),
178                dma_attrs.as_raw(),
179            )
180        };
181        if ret.is_null() {
182            return Err(ENOMEM);
183        }
184        // INVARIANT:
185        // - We just successfully allocated a coherent region which is accessible for
186        //   `count` elements, hence the cpu address is valid. We also hold a refcounted reference
187        //   to the device.
188        // - The allocated `size` is equal to `size_of::<T> * count`.
189        // - The allocated `size` fits into a `usize`.
190        Ok(Self {
191            dev: dev.into(),
192            dma_handle,
193            count,
194            cpu_addr: ret.cast::<T>(),
195            dma_attrs,
196        })
197    }
198
199    /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
200    /// `dma_attrs` is 0 by default.
201    pub fn alloc_coherent(
202        dev: &Device<Bound>,
203        count: usize,
204        gfp_flags: kernel::alloc::Flags,
205    ) -> Result<CoherentAllocation<T>> {
206        CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
207    }
208
209    /// Returns the number of elements `T` in this allocation.
210    ///
211    /// Note that this is not the size of the allocation in bytes, which is provided by
212    /// [`Self::size`].
213    pub fn count(&self) -> usize {
214        self.count
215    }
216
217    /// Returns the size in bytes of this allocation.
218    pub fn size(&self) -> usize {
219        // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
220        // a `usize`.
221        self.count * core::mem::size_of::<T>()
222    }
223
224    /// Returns the base address to the allocated region in the CPU's virtual address space.
225    pub fn start_ptr(&self) -> *const T {
226        self.cpu_addr
227    }
228
229    /// Returns the base address to the allocated region in the CPU's virtual address space as
230    /// a mutable pointer.
231    pub fn start_ptr_mut(&mut self) -> *mut T {
232        self.cpu_addr
233    }
234
235    /// Returns a DMA handle which may be given to the device as the DMA address base of
236    /// the region.
237    pub fn dma_handle(&self) -> bindings::dma_addr_t {
238        self.dma_handle
239    }
240
241    /// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
242    /// device as the DMA address base of the region.
243    ///
244    /// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
245    pub fn dma_handle_with_offset(&self, offset: usize) -> Result<bindings::dma_addr_t> {
246        if offset >= self.count {
247            Err(EINVAL)
248        } else {
249            // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
250            // into a `usize`, and `offset` is inferior to `count`.
251            Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as bindings::dma_addr_t)
252        }
253    }
254
255    /// Common helper to validate a range applied from the allocated region in the CPU's virtual
256    /// address space.
257    fn validate_range(&self, offset: usize, count: usize) -> Result {
258        if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
259            return Err(EINVAL);
260        }
261        Ok(())
262    }
263
264    /// Returns the data from the region starting from `offset` as a slice.
265    /// `offset` and `count` are in units of `T`, not the number of bytes.
266    ///
267    /// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
268    /// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
269    /// instead.
270    ///
271    /// # Safety
272    ///
273    /// * Callers must ensure that the device does not read/write to/from memory while the returned
274    ///   slice is live.
275    /// * Callers must ensure that this call does not race with a write to the same region while
276    ///   the returned slice is live.
277    pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
278        self.validate_range(offset, count)?;
279        // SAFETY:
280        // - The pointer is valid due to type invariant on `CoherentAllocation`,
281        //   we've just checked that the range and index is within bounds. The immutability of the
282        //   data is also guaranteed by the safety requirements of the function.
283        // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
284        //   that `self.count` won't overflow early in the constructor.
285        Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
286    }
287
288    /// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
289    /// slice is returned.
290    ///
291    /// # Safety
292    ///
293    /// * Callers must ensure that the device does not read/write to/from memory while the returned
294    ///   slice is live.
295    /// * Callers must ensure that this call does not race with a read or write to the same region
296    ///   while the returned slice is live.
297    pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
298        self.validate_range(offset, count)?;
299        // SAFETY:
300        // - The pointer is valid due to type invariant on `CoherentAllocation`,
301        //   we've just checked that the range and index is within bounds. The immutability of the
302        //   data is also guaranteed by the safety requirements of the function.
303        // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
304        //   that `self.count` won't overflow early in the constructor.
305        Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
306    }
307
308    /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
309    /// number of bytes.
310    ///
311    /// # Safety
312    ///
313    /// * Callers must ensure that the device does not read/write to/from memory while the returned
314    ///   slice is live.
315    /// * Callers must ensure that this call does not race with a read or write to the same region
316    ///   that overlaps with this write.
317    ///
318    /// # Examples
319    ///
320    /// ```
321    /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
322    /// let somedata: [u8; 4] = [0xf; 4];
323    /// let buf: &[u8] = &somedata;
324    /// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
325    /// // region.
326    /// unsafe { alloc.write(buf, 0)?; }
327    /// # Ok::<(), Error>(()) }
328    /// ```
329    pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
330        self.validate_range(offset, src.len())?;
331        // SAFETY:
332        // - The pointer is valid due to type invariant on `CoherentAllocation`
333        //   and we've just checked that the range and index is within bounds.
334        // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
335        //   that `self.count` won't overflow early in the constructor.
336        unsafe {
337            core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
338        };
339        Ok(())
340    }
341
342    /// Returns a pointer to an element from the region with bounds checking. `offset` is in
343    /// units of `T`, not the number of bytes.
344    ///
345    /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
346    #[doc(hidden)]
347    pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
348        if offset >= self.count {
349            return Err(EINVAL);
350        }
351        // SAFETY:
352        // - The pointer is valid due to type invariant on `CoherentAllocation`
353        // and we've just checked that the range and index is within bounds.
354        // - `offset` can't overflow since it is smaller than `self.count` and we've checked
355        // that `self.count` won't overflow early in the constructor.
356        Ok(unsafe { self.cpu_addr.add(offset) })
357    }
358
359    /// Reads the value of `field` and ensures that its type is [`FromBytes`].
360    ///
361    /// # Safety
362    ///
363    /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
364    /// validated beforehand.
365    ///
366    /// Public but hidden since it should only be used from [`dma_read`] macro.
367    #[doc(hidden)]
368    pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
369        // SAFETY:
370        // - By the safety requirements field is valid.
371        // - Using read_volatile() here is not sound as per the usual rules, the usage here is
372        // a special exception with the following notes in place. When dealing with a potential
373        // race from a hardware or code outside kernel (e.g. user-space program), we need that
374        // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
375        // rationale behind is that it should generate the same code as READ_ONCE() which the
376        // kernel already relies on to avoid UB on data races. Note that the usage of
377        // read_volatile() is limited to this particular case, it cannot be used to prevent
378        // the UB caused by racing between two kernel functions nor do they provide atomicity.
379        unsafe { field.read_volatile() }
380    }
381
382    /// Writes a value to `field` and ensures that its type is [`AsBytes`].
383    ///
384    /// # Safety
385    ///
386    /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
387    /// validated beforehand.
388    ///
389    /// Public but hidden since it should only be used from [`dma_write`] macro.
390    #[doc(hidden)]
391    pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
392        // SAFETY:
393        // - By the safety requirements field is valid.
394        // - Using write_volatile() here is not sound as per the usual rules, the usage here is
395        // a special exception with the following notes in place. When dealing with a potential
396        // race from a hardware or code outside kernel (e.g. user-space program), we need that
397        // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
398        // rationale behind is that it should generate the same code as WRITE_ONCE() which the
399        // kernel already relies on to avoid UB on data races. Note that the usage of
400        // write_volatile() is limited to this particular case, it cannot be used to prevent
401        // the UB caused by racing between two kernel functions nor do they provide atomicity.
402        unsafe { field.write_volatile(val) }
403    }
404}
405
406/// Note that the device configured to do DMA must be halted before this object is dropped.
407impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
408    fn drop(&mut self) {
409        let size = self.count * core::mem::size_of::<T>();
410        // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
411        // The cpu address, and the dma handle are valid due to the type invariants on
412        // `CoherentAllocation`.
413        unsafe {
414            bindings::dma_free_attrs(
415                self.dev.as_raw(),
416                size,
417                self.cpu_addr.cast(),
418                self.dma_handle,
419                self.dma_attrs.as_raw(),
420            )
421        }
422    }
423}
424
425// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
426// can be sent to another thread.
427unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
428
429/// Reads a field of an item from an allocated region of structs.
430///
431/// # Examples
432///
433/// ```
434/// use kernel::device::Device;
435/// use kernel::dma::{attrs::*, CoherentAllocation};
436///
437/// struct MyStruct { field: u32, }
438///
439/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
440/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
441/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
442/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
443///
444/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
445/// let whole = kernel::dma_read!(alloc[2]);
446/// let field = kernel::dma_read!(alloc[1].field);
447/// # Ok::<(), Error>(()) }
448/// ```
449#[macro_export]
450macro_rules! dma_read {
451    ($dma:expr, $idx: expr, $($field:tt)*) => {{
452        (|| -> ::core::result::Result<_, $crate::error::Error> {
453            let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
454            // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
455            // dereferenced. The compiler also further validates the expression on whether `field`
456            // is a member of `item` when expanded by the macro.
457            unsafe {
458                let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
459                ::core::result::Result::Ok(
460                    $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
461                )
462            }
463        })()
464    }};
465    ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
466        $crate::dma_read!($dma, $idx, $($field)*)
467    };
468    ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
469        $crate::dma_read!($($dma).*, $idx, $($field)*)
470    };
471}
472
473/// Writes to a field of an item from an allocated region of structs.
474///
475/// # Examples
476///
477/// ```
478/// use kernel::device::Device;
479/// use kernel::dma::{attrs::*, CoherentAllocation};
480///
481/// struct MyStruct { member: u32, }
482///
483/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
484/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
485/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
486/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
487///
488/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
489/// kernel::dma_write!(alloc[2].member = 0xf);
490/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
491/// # Ok::<(), Error>(()) }
492/// ```
493#[macro_export]
494macro_rules! dma_write {
495    ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
496        $crate::dma_write!($dma, $idx, $($field)*)
497    }};
498    ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
499        $crate::dma_write!($($dma).*, $idx, $($field)*)
500    }};
501    ($dma:expr, $idx: expr, = $val:expr) => {
502        (|| -> ::core::result::Result<_, $crate::error::Error> {
503            let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
504            // SAFETY: `item_from_index` ensures that `item` is always a valid item.
505            unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
506            ::core::result::Result::Ok(())
507        })()
508    };
509    ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
510        (|| -> ::core::result::Result<_, $crate::error::Error> {
511            let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
512            // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
513            // dereferenced. The compiler also further validates the expression on whether `field`
514            // is a member of `item` when expanded by the macro.
515            unsafe {
516                let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
517                $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
518            }
519            ::core::result::Result::Ok(())
520        })()
521    };
522}