kernel/dma.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Direct memory access (DMA).
4//!
5//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7use crate::{
8 bindings, build_assert,
9 device::{Bound, Device},
10 error::code::*,
11 error::Result,
12 transmute::{AsBytes, FromBytes},
13 types::ARef,
14};
15
16/// Possible attributes associated with a DMA mapping.
17///
18/// They can be combined with the operators `|`, `&`, and `!`.
19///
20/// Values can be used from the [`attrs`] module.
21///
22/// # Examples
23///
24/// ```
25/// # use kernel::device::{Bound, Device};
26/// use kernel::dma::{attrs::*, CoherentAllocation};
27///
28/// # fn test(dev: &Device<Bound>) -> Result {
29/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
30/// let c: CoherentAllocation<u64> =
31/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
32/// # Ok::<(), Error>(()) }
33/// ```
34#[derive(Clone, Copy, PartialEq)]
35#[repr(transparent)]
36pub struct Attrs(u32);
37
38impl Attrs {
39 /// Get the raw representation of this attribute.
40 pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
41 self.0 as _
42 }
43
44 /// Check whether `flags` is contained in `self`.
45 pub fn contains(self, flags: Attrs) -> bool {
46 (self & flags) == flags
47 }
48}
49
50impl core::ops::BitOr for Attrs {
51 type Output = Self;
52 fn bitor(self, rhs: Self) -> Self::Output {
53 Self(self.0 | rhs.0)
54 }
55}
56
57impl core::ops::BitAnd for Attrs {
58 type Output = Self;
59 fn bitand(self, rhs: Self) -> Self::Output {
60 Self(self.0 & rhs.0)
61 }
62}
63
64impl core::ops::Not for Attrs {
65 type Output = Self;
66 fn not(self) -> Self::Output {
67 Self(!self.0)
68 }
69}
70
71/// DMA mapping attributes.
72pub mod attrs {
73 use super::Attrs;
74
75 /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
76 /// and writes may pass each other.
77 pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
78
79 /// Specifies that writes to the mapping may be buffered to improve performance.
80 pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
81
82 /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
83 pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
84
85 /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
86 /// that it has been already transferred to 'device' domain.
87 pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
88
89 /// Forces contiguous allocation of the buffer in physical memory.
90 pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
91
92 /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
93 /// to allocate memory to in a way that gives better TLB efficiency.
94 pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
95
96 /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
97 /// __GFP_NOWARN).
98 pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
99
100 /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
101 /// ideally inaccessible or at least read-only at lesser-privileged levels).
102 pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
103}
104
105/// An abstraction of the `dma_alloc_coherent` API.
106///
107/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
108/// large consistent DMA regions.
109///
110/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
111/// processor's virtual address space) and the device address which can be given to the device
112/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
113/// is dropped.
114///
115/// # Invariants
116///
117/// For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
118/// to an allocated region of consistent memory and `dma_handle` is the DMA address base of
119/// the region.
120// TODO
121//
122// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
123// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
124// that device resources can never survive device unbind.
125//
126// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
127// allocation from surviving device unbind; it would require RCU read side critical sections to
128// access the memory, which may require subsequent unnecessary copies.
129//
130// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
131// entire `CoherentAllocation` including the allocated memory itself.
132pub struct CoherentAllocation<T: AsBytes + FromBytes> {
133 dev: ARef<Device>,
134 dma_handle: bindings::dma_addr_t,
135 count: usize,
136 cpu_addr: *mut T,
137 dma_attrs: Attrs,
138}
139
140impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
141 /// Allocates a region of `size_of::<T> * count` of consistent memory.
142 ///
143 /// # Examples
144 ///
145 /// ```
146 /// # use kernel::device::{Bound, Device};
147 /// use kernel::dma::{attrs::*, CoherentAllocation};
148 ///
149 /// # fn test(dev: &Device<Bound>) -> Result {
150 /// let c: CoherentAllocation<u64> =
151 /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
152 /// # Ok::<(), Error>(()) }
153 /// ```
154 pub fn alloc_attrs(
155 dev: &Device<Bound>,
156 count: usize,
157 gfp_flags: kernel::alloc::Flags,
158 dma_attrs: Attrs,
159 ) -> Result<CoherentAllocation<T>> {
160 build_assert!(
161 core::mem::size_of::<T>() > 0,
162 "It doesn't make sense for the allocated type to be a ZST"
163 );
164
165 let size = count
166 .checked_mul(core::mem::size_of::<T>())
167 .ok_or(EOVERFLOW)?;
168 let mut dma_handle = 0;
169 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
170 let ret = unsafe {
171 bindings::dma_alloc_attrs(
172 dev.as_raw(),
173 size,
174 &mut dma_handle,
175 gfp_flags.as_raw(),
176 dma_attrs.as_raw(),
177 )
178 };
179 if ret.is_null() {
180 return Err(ENOMEM);
181 }
182 // INVARIANT: We just successfully allocated a coherent region which is accessible for
183 // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
184 // to the device.
185 Ok(Self {
186 dev: dev.into(),
187 dma_handle,
188 count,
189 cpu_addr: ret as *mut T,
190 dma_attrs,
191 })
192 }
193
194 /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
195 /// `dma_attrs` is 0 by default.
196 pub fn alloc_coherent(
197 dev: &Device<Bound>,
198 count: usize,
199 gfp_flags: kernel::alloc::Flags,
200 ) -> Result<CoherentAllocation<T>> {
201 CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
202 }
203
204 /// Returns the base address to the allocated region in the CPU's virtual address space.
205 pub fn start_ptr(&self) -> *const T {
206 self.cpu_addr
207 }
208
209 /// Returns the base address to the allocated region in the CPU's virtual address space as
210 /// a mutable pointer.
211 pub fn start_ptr_mut(&mut self) -> *mut T {
212 self.cpu_addr
213 }
214
215 /// Returns a DMA handle which may given to the device as the DMA address base of
216 /// the region.
217 pub fn dma_handle(&self) -> bindings::dma_addr_t {
218 self.dma_handle
219 }
220
221 /// Returns a pointer to an element from the region with bounds checking. `offset` is in
222 /// units of `T`, not the number of bytes.
223 ///
224 /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
225 #[doc(hidden)]
226 pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
227 if offset >= self.count {
228 return Err(EINVAL);
229 }
230 // SAFETY:
231 // - The pointer is valid due to type invariant on `CoherentAllocation`
232 // and we've just checked that the range and index is within bounds.
233 // - `offset` can't overflow since it is smaller than `self.count` and we've checked
234 // that `self.count` won't overflow early in the constructor.
235 Ok(unsafe { self.cpu_addr.add(offset) })
236 }
237
238 /// Reads the value of `field` and ensures that its type is [`FromBytes`].
239 ///
240 /// # Safety
241 ///
242 /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
243 /// validated beforehand.
244 ///
245 /// Public but hidden since it should only be used from [`dma_read`] macro.
246 #[doc(hidden)]
247 pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
248 // SAFETY:
249 // - By the safety requirements field is valid.
250 // - Using read_volatile() here is not sound as per the usual rules, the usage here is
251 // a special exception with the following notes in place. When dealing with a potential
252 // race from a hardware or code outside kernel (e.g. user-space program), we need that
253 // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
254 // rationale behind is that it should generate the same code as READ_ONCE() which the
255 // kernel already relies on to avoid UB on data races. Note that the usage of
256 // read_volatile() is limited to this particular case, it cannot be used to prevent
257 // the UB caused by racing between two kernel functions nor do they provide atomicity.
258 unsafe { field.read_volatile() }
259 }
260
261 /// Writes a value to `field` and ensures that its type is [`AsBytes`].
262 ///
263 /// # Safety
264 ///
265 /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
266 /// validated beforehand.
267 ///
268 /// Public but hidden since it should only be used from [`dma_write`] macro.
269 #[doc(hidden)]
270 pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
271 // SAFETY:
272 // - By the safety requirements field is valid.
273 // - Using write_volatile() here is not sound as per the usual rules, the usage here is
274 // a special exception with the following notes in place. When dealing with a potential
275 // race from a hardware or code outside kernel (e.g. user-space program), we need that
276 // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
277 // rationale behind is that it should generate the same code as WRITE_ONCE() which the
278 // kernel already relies on to avoid UB on data races. Note that the usage of
279 // write_volatile() is limited to this particular case, it cannot be used to prevent
280 // the UB caused by racing between two kernel functions nor do they provide atomicity.
281 unsafe { field.write_volatile(val) }
282 }
283}
284
285/// Note that the device configured to do DMA must be halted before this object is dropped.
286impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
287 fn drop(&mut self) {
288 let size = self.count * core::mem::size_of::<T>();
289 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
290 // The cpu address, and the dma handle are valid due to the type invariants on
291 // `CoherentAllocation`.
292 unsafe {
293 bindings::dma_free_attrs(
294 self.dev.as_raw(),
295 size,
296 self.cpu_addr as _,
297 self.dma_handle,
298 self.dma_attrs.as_raw(),
299 )
300 }
301 }
302}
303
304// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
305// can be sent to another thread.
306unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
307
308/// Reads a field of an item from an allocated region of structs.
309///
310/// # Examples
311///
312/// ```
313/// use kernel::device::Device;
314/// use kernel::dma::{attrs::*, CoherentAllocation};
315///
316/// struct MyStruct { field: u32, }
317///
318/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
319/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
320/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
321/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
322///
323/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
324/// let whole = kernel::dma_read!(alloc[2]);
325/// let field = kernel::dma_read!(alloc[1].field);
326/// # Ok::<(), Error>(()) }
327/// ```
328#[macro_export]
329macro_rules! dma_read {
330 ($dma:expr, $idx: expr, $($field:tt)*) => {{
331 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
332 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
333 // dereferenced. The compiler also further validates the expression on whether `field`
334 // is a member of `item` when expanded by the macro.
335 unsafe {
336 let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
337 $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
338 }
339 }};
340 ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
341 $crate::dma_read!($dma, $idx, $($field)*);
342 };
343 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
344 $crate::dma_read!($($dma).*, $idx, $($field)*);
345 };
346}
347
348/// Writes to a field of an item from an allocated region of structs.
349///
350/// # Examples
351///
352/// ```
353/// use kernel::device::Device;
354/// use kernel::dma::{attrs::*, CoherentAllocation};
355///
356/// struct MyStruct { member: u32, }
357///
358/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
359/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
360/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
361/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
362///
363/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
364/// kernel::dma_write!(alloc[2].member = 0xf);
365/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
366/// # Ok::<(), Error>(()) }
367/// ```
368#[macro_export]
369macro_rules! dma_write {
370 ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
371 $crate::dma_write!($dma, $idx, $($field)*);
372 }};
373 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
374 $crate::dma_write!($($dma).*, $idx, $($field)*);
375 }};
376 ($dma:expr, $idx: expr, = $val:expr) => {
377 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
378 // SAFETY: `item_from_index` ensures that `item` is always a valid item.
379 unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
380 };
381 ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
382 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
383 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
384 // dereferenced. The compiler also further validates the expression on whether `field`
385 // is a member of `item` when expanded by the macro.
386 unsafe {
387 let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
388 $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
389 }
390 };
391}