kernel/dma.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Direct memory access (DMA).
4//!
5//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7use crate::{
8 bindings, build_assert, device,
9 device::{Bound, Core},
10 error::{to_result, Result},
11 prelude::*,
12 sync::aref::ARef,
13 transmute::{AsBytes, FromBytes},
14};
15use core::ptr::NonNull;
16
17/// DMA address type.
18///
19/// Represents a bus address used for Direct Memory Access (DMA) operations.
20///
21/// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on
22/// `CONFIG_ARCH_DMA_ADDR_T_64BIT`.
23///
24/// Note that this may be `u64` even on 32-bit architectures.
25pub type DmaAddress = bindings::dma_addr_t;
26
27/// Trait to be implemented by DMA capable bus devices.
28///
29/// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
30/// where the underlying bus is DMA capable, such as [`pci::Device`](::kernel::pci::Device) or
31/// [`platform::Device`](::kernel::platform::Device).
32pub trait Device: AsRef<device::Device<Core>> {
33 /// Set up the device's DMA streaming addressing capabilities.
34 ///
35 /// This method is usually called once from `probe()` as soon as the device capabilities are
36 /// known.
37 ///
38 /// # Safety
39 ///
40 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
41 /// such as [`CoherentAllocation::alloc_attrs`].
42 unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
43 // SAFETY:
44 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
45 // - The safety requirement of this function guarantees that there are no concurrent calls
46 // to DMA allocation and mapping primitives using this mask.
47 to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
48 }
49
50 /// Set up the device's DMA coherent addressing capabilities.
51 ///
52 /// This method is usually called once from `probe()` as soon as the device capabilities are
53 /// known.
54 ///
55 /// # Safety
56 ///
57 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
58 /// such as [`CoherentAllocation::alloc_attrs`].
59 unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
60 // SAFETY:
61 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
62 // - The safety requirement of this function guarantees that there are no concurrent calls
63 // to DMA allocation and mapping primitives using this mask.
64 to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
65 }
66
67 /// Set up the device's DMA addressing capabilities.
68 ///
69 /// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
70 ///
71 /// This method is usually called once from `probe()` as soon as the device capabilities are
72 /// known.
73 ///
74 /// # Safety
75 ///
76 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
77 /// such as [`CoherentAllocation::alloc_attrs`].
78 unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
79 // SAFETY:
80 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
81 // - The safety requirement of this function guarantees that there are no concurrent calls
82 // to DMA allocation and mapping primitives using this mask.
83 to_result(unsafe {
84 bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
85 })
86 }
87}
88
89/// A DMA mask that holds a bitmask with the lowest `n` bits set.
90///
91/// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
92/// are guaranteed to never exceed the bit width of `u64`.
93///
94/// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
95#[derive(Debug, Clone, Copy, PartialEq, Eq)]
96pub struct DmaMask(u64);
97
98impl DmaMask {
99 /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
100 ///
101 /// For `n <= 64`, sets exactly the lowest `n` bits.
102 /// For `n > 64`, results in a build error.
103 ///
104 /// # Examples
105 ///
106 /// ```
107 /// use kernel::dma::DmaMask;
108 ///
109 /// let mask0 = DmaMask::new::<0>();
110 /// assert_eq!(mask0.value(), 0);
111 ///
112 /// let mask1 = DmaMask::new::<1>();
113 /// assert_eq!(mask1.value(), 0b1);
114 ///
115 /// let mask64 = DmaMask::new::<64>();
116 /// assert_eq!(mask64.value(), u64::MAX);
117 ///
118 /// // Build failure.
119 /// // let mask_overflow = DmaMask::new::<100>();
120 /// ```
121 #[inline]
122 pub const fn new<const N: u32>() -> Self {
123 let Ok(mask) = Self::try_new(N) else {
124 build_error!("Invalid DMA Mask.");
125 };
126
127 mask
128 }
129
130 /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
131 ///
132 /// For `n <= 64`, sets exactly the lowest `n` bits.
133 /// For `n > 64`, returns [`EINVAL`].
134 ///
135 /// # Examples
136 ///
137 /// ```
138 /// use kernel::dma::DmaMask;
139 ///
140 /// let mask0 = DmaMask::try_new(0)?;
141 /// assert_eq!(mask0.value(), 0);
142 ///
143 /// let mask1 = DmaMask::try_new(1)?;
144 /// assert_eq!(mask1.value(), 0b1);
145 ///
146 /// let mask64 = DmaMask::try_new(64)?;
147 /// assert_eq!(mask64.value(), u64::MAX);
148 ///
149 /// let mask_overflow = DmaMask::try_new(100);
150 /// assert!(mask_overflow.is_err());
151 /// # Ok::<(), Error>(())
152 /// ```
153 #[inline]
154 pub const fn try_new(n: u32) -> Result<Self> {
155 Ok(Self(match n {
156 0 => 0,
157 1..=64 => u64::MAX >> (64 - n),
158 _ => return Err(EINVAL),
159 }))
160 }
161
162 /// Returns the underlying `u64` bitmask value.
163 #[inline]
164 pub const fn value(&self) -> u64 {
165 self.0
166 }
167}
168
169/// Possible attributes associated with a DMA mapping.
170///
171/// They can be combined with the operators `|`, `&`, and `!`.
172///
173/// Values can be used from the [`attrs`] module.
174///
175/// # Examples
176///
177/// ```
178/// # use kernel::device::{Bound, Device};
179/// use kernel::dma::{attrs::*, CoherentAllocation};
180///
181/// # fn test(dev: &Device<Bound>) -> Result {
182/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
183/// let c: CoherentAllocation<u64> =
184/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
185/// # Ok::<(), Error>(()) }
186/// ```
187#[derive(Clone, Copy, PartialEq)]
188#[repr(transparent)]
189pub struct Attrs(u32);
190
191impl Attrs {
192 /// Get the raw representation of this attribute.
193 pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
194 self.0 as crate::ffi::c_ulong
195 }
196
197 /// Check whether `flags` is contained in `self`.
198 pub fn contains(self, flags: Attrs) -> bool {
199 (self & flags) == flags
200 }
201}
202
203impl core::ops::BitOr for Attrs {
204 type Output = Self;
205 fn bitor(self, rhs: Self) -> Self::Output {
206 Self(self.0 | rhs.0)
207 }
208}
209
210impl core::ops::BitAnd for Attrs {
211 type Output = Self;
212 fn bitand(self, rhs: Self) -> Self::Output {
213 Self(self.0 & rhs.0)
214 }
215}
216
217impl core::ops::Not for Attrs {
218 type Output = Self;
219 fn not(self) -> Self::Output {
220 Self(!self.0)
221 }
222}
223
224/// DMA mapping attributes.
225pub mod attrs {
226 use super::Attrs;
227
228 /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
229 /// and writes may pass each other.
230 pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
231
232 /// Specifies that writes to the mapping may be buffered to improve performance.
233 pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
234
235 /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
236 pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
237
238 /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
239 /// that it has been already transferred to 'device' domain.
240 pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
241
242 /// Forces contiguous allocation of the buffer in physical memory.
243 pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
244
245 /// Hints DMA-mapping subsystem that it's probably not worth the time to try
246 /// to allocate memory to in a way that gives better TLB efficiency.
247 pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
248
249 /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
250 /// `__GFP_NOWARN`).
251 pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
252
253 /// Indicates that the buffer is fully accessible at an elevated privilege level (and
254 /// ideally inaccessible or at least read-only at lesser-privileged levels).
255 pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
256
257 /// Indicates that the buffer is MMIO memory.
258 pub const DMA_ATTR_MMIO: Attrs = Attrs(bindings::DMA_ATTR_MMIO);
259}
260
261/// DMA data direction.
262///
263/// Corresponds to the C [`enum dma_data_direction`].
264///
265/// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h
266#[derive(Copy, Clone, PartialEq, Eq, Debug)]
267#[repr(u32)]
268pub enum DataDirection {
269 /// The DMA mapping is for bidirectional data transfer.
270 ///
271 /// This is used when the buffer can be both read from and written to by the device.
272 /// The cache for the corresponding memory region is both flushed and invalidated.
273 Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL),
274
275 /// The DMA mapping is for data transfer from memory to the device (write).
276 ///
277 /// The CPU has prepared data in the buffer, and the device will read it.
278 /// The cache for the corresponding memory region is flushed before device access.
279 ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE),
280
281 /// The DMA mapping is for data transfer from the device to memory (read).
282 ///
283 /// The device will write data into the buffer for the CPU to read.
284 /// The cache for the corresponding memory region is invalidated before CPU access.
285 FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE),
286
287 /// The DMA mapping is not for data transfer.
288 ///
289 /// This is primarily for debugging purposes. With this direction, the DMA mapping API
290 /// will not perform any cache coherency operations.
291 None = Self::const_cast(bindings::dma_data_direction_DMA_NONE),
292}
293
294impl DataDirection {
295 /// Casts the bindgen-generated enum type to a `u32` at compile time.
296 ///
297 /// This function will cause a compile-time error if the underlying value of the
298 /// C enum is out of bounds for `u32`.
299 const fn const_cast(val: bindings::dma_data_direction) -> u32 {
300 // CAST: The C standard allows compilers to choose different integer types for enums.
301 // To safely check the value, we cast it to a wide signed integer type (`i128`)
302 // which can hold any standard C integer enum type without truncation.
303 let wide_val = val as i128;
304
305 // Check if the value is outside the valid range for the target type `u32`.
306 // CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison.
307 if wide_val < 0 || wide_val > u32::MAX as i128 {
308 // Trigger a compile-time error in a const context.
309 build_error!("C enum value is out of bounds for the target type `u32`.");
310 }
311
312 // CAST: This cast is valid because the check above guarantees that `wide_val`
313 // is within the representable range of `u32`.
314 wide_val as u32
315 }
316}
317
318impl From<DataDirection> for bindings::dma_data_direction {
319 /// Returns the raw representation of [`enum dma_data_direction`].
320 fn from(direction: DataDirection) -> Self {
321 // CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum.
322 // The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible
323 // with the enum variants of `DataDirection`, which is a valid assumption given our
324 // compile-time checks.
325 direction as u32 as Self
326 }
327}
328
329/// An abstraction of the `dma_alloc_coherent` API.
330///
331/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
332/// large coherent DMA regions.
333///
334/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
335/// processor's virtual address space) and the device address which can be given to the device
336/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
337/// is dropped.
338///
339/// # Invariants
340///
341/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
342/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
343/// region.
344/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
345/// - `size_of::<T> * count` fits into a `usize`.
346// TODO
347//
348// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
349// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
350// that device resources can never survive device unbind.
351//
352// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
353// allocation from surviving device unbind; it would require RCU read side critical sections to
354// access the memory, which may require subsequent unnecessary copies.
355//
356// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
357// entire `CoherentAllocation` including the allocated memory itself.
358pub struct CoherentAllocation<T: AsBytes + FromBytes> {
359 dev: ARef<device::Device>,
360 dma_handle: DmaAddress,
361 count: usize,
362 cpu_addr: NonNull<T>,
363 dma_attrs: Attrs,
364}
365
366impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
367 /// Allocates a region of `size_of::<T> * count` of coherent memory.
368 ///
369 /// # Examples
370 ///
371 /// ```
372 /// # use kernel::device::{Bound, Device};
373 /// use kernel::dma::{attrs::*, CoherentAllocation};
374 ///
375 /// # fn test(dev: &Device<Bound>) -> Result {
376 /// let c: CoherentAllocation<u64> =
377 /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
378 /// # Ok::<(), Error>(()) }
379 /// ```
380 pub fn alloc_attrs(
381 dev: &device::Device<Bound>,
382 count: usize,
383 gfp_flags: kernel::alloc::Flags,
384 dma_attrs: Attrs,
385 ) -> Result<CoherentAllocation<T>> {
386 build_assert!(
387 core::mem::size_of::<T>() > 0,
388 "It doesn't make sense for the allocated type to be a ZST"
389 );
390
391 let size = count
392 .checked_mul(core::mem::size_of::<T>())
393 .ok_or(EOVERFLOW)?;
394 let mut dma_handle = 0;
395 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
396 let addr = unsafe {
397 bindings::dma_alloc_attrs(
398 dev.as_raw(),
399 size,
400 &mut dma_handle,
401 gfp_flags.as_raw(),
402 dma_attrs.as_raw(),
403 )
404 };
405 let addr = NonNull::new(addr).ok_or(ENOMEM)?;
406 // INVARIANT:
407 // - We just successfully allocated a coherent region which is accessible for
408 // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
409 // to the device.
410 // - The allocated `size` is equal to `size_of::<T> * count`.
411 // - The allocated `size` fits into a `usize`.
412 Ok(Self {
413 dev: dev.into(),
414 dma_handle,
415 count,
416 cpu_addr: addr.cast(),
417 dma_attrs,
418 })
419 }
420
421 /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
422 /// `dma_attrs` is 0 by default.
423 pub fn alloc_coherent(
424 dev: &device::Device<Bound>,
425 count: usize,
426 gfp_flags: kernel::alloc::Flags,
427 ) -> Result<CoherentAllocation<T>> {
428 CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
429 }
430
431 /// Returns the number of elements `T` in this allocation.
432 ///
433 /// Note that this is not the size of the allocation in bytes, which is provided by
434 /// [`Self::size`].
435 pub fn count(&self) -> usize {
436 self.count
437 }
438
439 /// Returns the size in bytes of this allocation.
440 pub fn size(&self) -> usize {
441 // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
442 // a `usize`.
443 self.count * core::mem::size_of::<T>()
444 }
445
446 /// Returns the base address to the allocated region in the CPU's virtual address space.
447 pub fn start_ptr(&self) -> *const T {
448 self.cpu_addr.as_ptr()
449 }
450
451 /// Returns the base address to the allocated region in the CPU's virtual address space as
452 /// a mutable pointer.
453 pub fn start_ptr_mut(&mut self) -> *mut T {
454 self.cpu_addr.as_ptr()
455 }
456
457 /// Returns a DMA handle which may be given to the device as the DMA address base of
458 /// the region.
459 pub fn dma_handle(&self) -> DmaAddress {
460 self.dma_handle
461 }
462
463 /// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
464 /// device as the DMA address base of the region.
465 ///
466 /// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
467 pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> {
468 if offset >= self.count {
469 Err(EINVAL)
470 } else {
471 // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
472 // into a `usize`, and `offset` is inferior to `count`.
473 Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress)
474 }
475 }
476
477 /// Common helper to validate a range applied from the allocated region in the CPU's virtual
478 /// address space.
479 fn validate_range(&self, offset: usize, count: usize) -> Result {
480 if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
481 return Err(EINVAL);
482 }
483 Ok(())
484 }
485
486 /// Returns the data from the region starting from `offset` as a slice.
487 /// `offset` and `count` are in units of `T`, not the number of bytes.
488 ///
489 /// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
490 /// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
491 /// instead.
492 ///
493 /// # Safety
494 ///
495 /// * Callers must ensure that the device does not read/write to/from memory while the returned
496 /// slice is live.
497 /// * Callers must ensure that this call does not race with a write to the same region while
498 /// the returned slice is live.
499 pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
500 self.validate_range(offset, count)?;
501 // SAFETY:
502 // - The pointer is valid due to type invariant on `CoherentAllocation`,
503 // we've just checked that the range and index is within bounds. The immutability of the
504 // data is also guaranteed by the safety requirements of the function.
505 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
506 // that `self.count` won't overflow early in the constructor.
507 Ok(unsafe { core::slice::from_raw_parts(self.start_ptr().add(offset), count) })
508 }
509
510 /// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
511 /// slice is returned.
512 ///
513 /// # Safety
514 ///
515 /// * Callers must ensure that the device does not read/write to/from memory while the returned
516 /// slice is live.
517 /// * Callers must ensure that this call does not race with a read or write to the same region
518 /// while the returned slice is live.
519 pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
520 self.validate_range(offset, count)?;
521 // SAFETY:
522 // - The pointer is valid due to type invariant on `CoherentAllocation`,
523 // we've just checked that the range and index is within bounds. The immutability of the
524 // data is also guaranteed by the safety requirements of the function.
525 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
526 // that `self.count` won't overflow early in the constructor.
527 Ok(unsafe { core::slice::from_raw_parts_mut(self.start_ptr_mut().add(offset), count) })
528 }
529
530 /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
531 /// number of bytes.
532 ///
533 /// # Safety
534 ///
535 /// * Callers must ensure that the device does not read/write to/from memory while the returned
536 /// slice is live.
537 /// * Callers must ensure that this call does not race with a read or write to the same region
538 /// that overlaps with this write.
539 ///
540 /// # Examples
541 ///
542 /// ```
543 /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
544 /// let somedata: [u8; 4] = [0xf; 4];
545 /// let buf: &[u8] = &somedata;
546 /// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
547 /// // region.
548 /// unsafe { alloc.write(buf, 0)?; }
549 /// # Ok::<(), Error>(()) }
550 /// ```
551 pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
552 self.validate_range(offset, src.len())?;
553 // SAFETY:
554 // - The pointer is valid due to type invariant on `CoherentAllocation`
555 // and we've just checked that the range and index is within bounds.
556 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
557 // that `self.count` won't overflow early in the constructor.
558 unsafe {
559 core::ptr::copy_nonoverlapping(
560 src.as_ptr(),
561 self.start_ptr_mut().add(offset),
562 src.len(),
563 )
564 };
565 Ok(())
566 }
567
568 /// Returns a pointer to an element from the region with bounds checking. `offset` is in
569 /// units of `T`, not the number of bytes.
570 ///
571 /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
572 #[doc(hidden)]
573 pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
574 if offset >= self.count {
575 return Err(EINVAL);
576 }
577 // SAFETY:
578 // - The pointer is valid due to type invariant on `CoherentAllocation`
579 // and we've just checked that the range and index is within bounds.
580 // - `offset` can't overflow since it is smaller than `self.count` and we've checked
581 // that `self.count` won't overflow early in the constructor.
582 Ok(unsafe { self.cpu_addr.as_ptr().add(offset) })
583 }
584
585 /// Reads the value of `field` and ensures that its type is [`FromBytes`].
586 ///
587 /// # Safety
588 ///
589 /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
590 /// validated beforehand.
591 ///
592 /// Public but hidden since it should only be used from [`dma_read`] macro.
593 #[doc(hidden)]
594 pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
595 // SAFETY:
596 // - By the safety requirements field is valid.
597 // - Using read_volatile() here is not sound as per the usual rules, the usage here is
598 // a special exception with the following notes in place. When dealing with a potential
599 // race from a hardware or code outside kernel (e.g. user-space program), we need that
600 // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
601 // rationale behind is that it should generate the same code as READ_ONCE() which the
602 // kernel already relies on to avoid UB on data races. Note that the usage of
603 // read_volatile() is limited to this particular case, it cannot be used to prevent
604 // the UB caused by racing between two kernel functions nor do they provide atomicity.
605 unsafe { field.read_volatile() }
606 }
607
608 /// Writes a value to `field` and ensures that its type is [`AsBytes`].
609 ///
610 /// # Safety
611 ///
612 /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
613 /// validated beforehand.
614 ///
615 /// Public but hidden since it should only be used from [`dma_write`] macro.
616 #[doc(hidden)]
617 pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
618 // SAFETY:
619 // - By the safety requirements field is valid.
620 // - Using write_volatile() here is not sound as per the usual rules, the usage here is
621 // a special exception with the following notes in place. When dealing with a potential
622 // race from a hardware or code outside kernel (e.g. user-space program), we need that
623 // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
624 // rationale behind is that it should generate the same code as WRITE_ONCE() which the
625 // kernel already relies on to avoid UB on data races. Note that the usage of
626 // write_volatile() is limited to this particular case, it cannot be used to prevent
627 // the UB caused by racing between two kernel functions nor do they provide atomicity.
628 unsafe { field.write_volatile(val) }
629 }
630}
631
632/// Note that the device configured to do DMA must be halted before this object is dropped.
633impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
634 fn drop(&mut self) {
635 let size = self.count * core::mem::size_of::<T>();
636 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
637 // The cpu address, and the dma handle are valid due to the type invariants on
638 // `CoherentAllocation`.
639 unsafe {
640 bindings::dma_free_attrs(
641 self.dev.as_raw(),
642 size,
643 self.start_ptr_mut().cast(),
644 self.dma_handle,
645 self.dma_attrs.as_raw(),
646 )
647 }
648 }
649}
650
651// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
652// can be sent to another thread.
653unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
654
655/// Reads a field of an item from an allocated region of structs.
656///
657/// # Examples
658///
659/// ```
660/// use kernel::device::Device;
661/// use kernel::dma::{attrs::*, CoherentAllocation};
662///
663/// struct MyStruct { field: u32, }
664///
665/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
666/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
667/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
668/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
669///
670/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
671/// let whole = kernel::dma_read!(alloc[2]);
672/// let field = kernel::dma_read!(alloc[1].field);
673/// # Ok::<(), Error>(()) }
674/// ```
675#[macro_export]
676macro_rules! dma_read {
677 ($dma:expr, $idx: expr, $($field:tt)*) => {{
678 (|| -> ::core::result::Result<_, $crate::error::Error> {
679 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
680 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
681 // dereferenced. The compiler also further validates the expression on whether `field`
682 // is a member of `item` when expanded by the macro.
683 unsafe {
684 let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
685 ::core::result::Result::Ok(
686 $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
687 )
688 }
689 })()
690 }};
691 ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
692 $crate::dma_read!($dma, $idx, $($field)*)
693 };
694 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
695 $crate::dma_read!($($dma).*, $idx, $($field)*)
696 };
697}
698
699/// Writes to a field of an item from an allocated region of structs.
700///
701/// # Examples
702///
703/// ```
704/// use kernel::device::Device;
705/// use kernel::dma::{attrs::*, CoherentAllocation};
706///
707/// struct MyStruct { member: u32, }
708///
709/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
710/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
711/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
712/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
713///
714/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
715/// kernel::dma_write!(alloc[2].member = 0xf);
716/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
717/// # Ok::<(), Error>(()) }
718/// ```
719#[macro_export]
720macro_rules! dma_write {
721 ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
722 $crate::dma_write!($dma, $idx, $($field)*)
723 }};
724 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
725 $crate::dma_write!($($dma).*, $idx, $($field)*)
726 }};
727 ($dma:expr, $idx: expr, = $val:expr) => {
728 (|| -> ::core::result::Result<_, $crate::error::Error> {
729 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
730 // SAFETY: `item_from_index` ensures that `item` is always a valid item.
731 unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
732 ::core::result::Result::Ok(())
733 })()
734 };
735 ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
736 (|| -> ::core::result::Result<_, $crate::error::Error> {
737 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
738 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
739 // dereferenced. The compiler also further validates the expression on whether `field`
740 // is a member of `item` when expanded by the macro.
741 unsafe {
742 let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
743 $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
744 }
745 ::core::result::Result::Ok(())
746 })()
747 };
748}