core/time.rs
1#![stable(feature = "duration_core", since = "1.25.0")]
2
3//! Temporal quantification.
4//!
5//! # Examples:
6//!
7//! There are multiple ways to create a new [`Duration`]:
8//!
9//! ```
10//! # use std::time::Duration;
11//! let five_seconds = Duration::from_secs(5);
12//! assert_eq!(five_seconds, Duration::from_millis(5_000));
13//! assert_eq!(five_seconds, Duration::from_micros(5_000_000));
14//! assert_eq!(five_seconds, Duration::from_nanos(5_000_000_000));
15//!
16//! let ten_seconds = Duration::from_secs(10);
17//! let seven_nanos = Duration::from_nanos(7);
18//! let total = ten_seconds + seven_nanos;
19//! assert_eq!(total, Duration::new(10, 7));
20//! ```
21
22use crate::fmt;
23use crate::iter::Sum;
24use crate::num::niche_types::Nanoseconds;
25use crate::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
26
27const NANOS_PER_SEC: u32 = 1_000_000_000;
28const NANOS_PER_MILLI: u32 = 1_000_000;
29const NANOS_PER_MICRO: u32 = 1_000;
30const MILLIS_PER_SEC: u64 = 1_000;
31const MICROS_PER_SEC: u64 = 1_000_000;
32#[unstable(feature = "duration_units", issue = "120301")]
33const SECS_PER_MINUTE: u64 = 60;
34#[unstable(feature = "duration_units", issue = "120301")]
35const MINS_PER_HOUR: u64 = 60;
36#[unstable(feature = "duration_units", issue = "120301")]
37const HOURS_PER_DAY: u64 = 24;
38#[unstable(feature = "duration_units", issue = "120301")]
39const DAYS_PER_WEEK: u64 = 7;
40
41/// A `Duration` type to represent a span of time, typically used for system
42/// timeouts.
43///
44/// Each `Duration` is composed of a whole number of seconds and a fractional part
45/// represented in nanoseconds. If the underlying system does not support
46/// nanosecond-level precision, APIs binding a system timeout will typically round up
47/// the number of nanoseconds.
48///
49/// [`Duration`]s implement many common traits, including [`Add`], [`Sub`], and other
50/// [`ops`] traits. It implements [`Default`] by returning a zero-length `Duration`.
51///
52/// [`ops`]: crate::ops
53///
54/// # Examples
55///
56/// ```
57/// use std::time::Duration;
58///
59/// let five_seconds = Duration::new(5, 0);
60/// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5);
61///
62/// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5);
63/// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5);
64///
65/// let ten_millis = Duration::from_millis(10);
66/// ```
67///
68/// # Formatting `Duration` values
69///
70/// `Duration` intentionally does not have a `Display` impl, as there are a
71/// variety of ways to format spans of time for human readability. `Duration`
72/// provides a `Debug` impl that shows the full precision of the value.
73///
74/// The `Debug` output uses the non-ASCII "µs" suffix for microseconds. If your
75/// program output may appear in contexts that cannot rely on full Unicode
76/// compatibility, you may wish to format `Duration` objects yourself or use a
77/// crate to do so.
78#[stable(feature = "duration", since = "1.3.0")]
79#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
80#[rustc_diagnostic_item = "Duration"]
81pub struct Duration {
82 secs: u64,
83 nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC
84}
85
86impl Duration {
87 /// The duration of one second.
88 ///
89 /// # Examples
90 ///
91 /// ```
92 /// #![feature(duration_constants)]
93 /// use std::time::Duration;
94 ///
95 /// assert_eq!(Duration::SECOND, Duration::from_secs(1));
96 /// ```
97 #[unstable(feature = "duration_constants", issue = "57391")]
98 pub const SECOND: Duration = Duration::from_secs(1);
99
100 /// The duration of one millisecond.
101 ///
102 /// # Examples
103 ///
104 /// ```
105 /// #![feature(duration_constants)]
106 /// use std::time::Duration;
107 ///
108 /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1));
109 /// ```
110 #[unstable(feature = "duration_constants", issue = "57391")]
111 pub const MILLISECOND: Duration = Duration::from_millis(1);
112
113 /// The duration of one microsecond.
114 ///
115 /// # Examples
116 ///
117 /// ```
118 /// #![feature(duration_constants)]
119 /// use std::time::Duration;
120 ///
121 /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1));
122 /// ```
123 #[unstable(feature = "duration_constants", issue = "57391")]
124 pub const MICROSECOND: Duration = Duration::from_micros(1);
125
126 /// The duration of one nanosecond.
127 ///
128 /// # Examples
129 ///
130 /// ```
131 /// #![feature(duration_constants)]
132 /// use std::time::Duration;
133 ///
134 /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1));
135 /// ```
136 #[unstable(feature = "duration_constants", issue = "57391")]
137 pub const NANOSECOND: Duration = Duration::from_nanos(1);
138
139 /// A duration of zero time.
140 ///
141 /// # Examples
142 ///
143 /// ```
144 /// use std::time::Duration;
145 ///
146 /// let duration = Duration::ZERO;
147 /// assert!(duration.is_zero());
148 /// assert_eq!(duration.as_nanos(), 0);
149 /// ```
150 #[stable(feature = "duration_zero", since = "1.53.0")]
151 pub const ZERO: Duration = Duration::from_nanos(0);
152
153 /// The maximum duration.
154 ///
155 /// May vary by platform as necessary. Must be able to contain the difference between
156 /// two instances of [`Instant`] or two instances of [`SystemTime`].
157 /// This constraint gives it a value of about 584,942,417,355 years in practice,
158 /// which is currently used on all platforms.
159 ///
160 /// # Examples
161 ///
162 /// ```
163 /// use std::time::Duration;
164 ///
165 /// assert_eq!(Duration::MAX, Duration::new(u64::MAX, 1_000_000_000 - 1));
166 /// ```
167 /// [`Instant`]: ../../std/time/struct.Instant.html
168 /// [`SystemTime`]: ../../std/time/struct.SystemTime.html
169 #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
170 pub const MAX: Duration = Duration::new(u64::MAX, NANOS_PER_SEC - 1);
171
172 /// Creates a new `Duration` from the specified number of whole seconds and
173 /// additional nanoseconds.
174 ///
175 /// If the number of nanoseconds is greater than 1 billion (the number of
176 /// nanoseconds in a second), then it will carry over into the seconds provided.
177 ///
178 /// # Panics
179 ///
180 /// This constructor will panic if the carry from the nanoseconds overflows
181 /// the seconds counter.
182 ///
183 /// # Examples
184 ///
185 /// ```
186 /// use std::time::Duration;
187 ///
188 /// let five_seconds = Duration::new(5, 0);
189 /// ```
190 #[stable(feature = "duration", since = "1.3.0")]
191 #[inline]
192 #[must_use]
193 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
194 pub const fn new(secs: u64, nanos: u32) -> Duration {
195 if nanos < NANOS_PER_SEC {
196 // SAFETY: nanos < NANOS_PER_SEC, therefore nanos is within the valid range
197 Duration { secs, nanos: unsafe { Nanoseconds::new_unchecked(nanos) } }
198 } else {
199 let secs = secs
200 .checked_add((nanos / NANOS_PER_SEC) as u64)
201 .expect("overflow in Duration::new");
202 let nanos = nanos % NANOS_PER_SEC;
203 // SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
204 Duration { secs, nanos: unsafe { Nanoseconds::new_unchecked(nanos) } }
205 }
206 }
207
208 /// Creates a new `Duration` from the specified number of whole seconds.
209 ///
210 /// # Examples
211 ///
212 /// ```
213 /// use std::time::Duration;
214 ///
215 /// let duration = Duration::from_secs(5);
216 ///
217 /// assert_eq!(5, duration.as_secs());
218 /// assert_eq!(0, duration.subsec_nanos());
219 /// ```
220 #[stable(feature = "duration", since = "1.3.0")]
221 #[must_use]
222 #[inline]
223 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
224 pub const fn from_secs(secs: u64) -> Duration {
225 Duration { secs, nanos: Nanoseconds::ZERO }
226 }
227
228 /// Creates a new `Duration` from the specified number of milliseconds.
229 ///
230 /// # Examples
231 ///
232 /// ```
233 /// use std::time::Duration;
234 ///
235 /// let duration = Duration::from_millis(2_569);
236 ///
237 /// assert_eq!(2, duration.as_secs());
238 /// assert_eq!(569_000_000, duration.subsec_nanos());
239 /// ```
240 #[stable(feature = "duration", since = "1.3.0")]
241 #[must_use]
242 #[inline]
243 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
244 pub const fn from_millis(millis: u64) -> Duration {
245 let secs = millis / MILLIS_PER_SEC;
246 let subsec_millis = (millis % MILLIS_PER_SEC) as u32;
247 // SAFETY: (x % 1_000) * 1_000_000 < 1_000_000_000
248 // => x % 1_000 < 1_000
249 let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_millis * NANOS_PER_MILLI) };
250
251 Duration { secs, nanos: subsec_nanos }
252 }
253
254 /// Creates a new `Duration` from the specified number of microseconds.
255 ///
256 /// # Examples
257 ///
258 /// ```
259 /// use std::time::Duration;
260 ///
261 /// let duration = Duration::from_micros(1_000_002);
262 ///
263 /// assert_eq!(1, duration.as_secs());
264 /// assert_eq!(2_000, duration.subsec_nanos());
265 /// ```
266 #[stable(feature = "duration_from_micros", since = "1.27.0")]
267 #[must_use]
268 #[inline]
269 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
270 pub const fn from_micros(micros: u64) -> Duration {
271 let secs = micros / MICROS_PER_SEC;
272 let subsec_micros = (micros % MICROS_PER_SEC) as u32;
273 // SAFETY: (x % 1_000_000) * 1_000 < 1_000_000_000
274 // => x % 1_000_000 < 1_000_000
275 let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_micros * NANOS_PER_MICRO) };
276
277 Duration { secs, nanos: subsec_nanos }
278 }
279
280 /// Creates a new `Duration` from the specified number of nanoseconds.
281 ///
282 /// Note: Using this on the return value of `as_nanos()` might cause unexpected behavior:
283 /// `as_nanos()` returns a u128, and can return values that do not fit in u64, e.g. 585 years.
284 /// Instead, consider using the pattern `Duration::new(d.as_secs(), d.subsec_nanos())`
285 /// if you cannot copy/clone the Duration directly.
286 ///
287 /// # Examples
288 ///
289 /// ```
290 /// use std::time::Duration;
291 ///
292 /// let duration = Duration::from_nanos(1_000_000_123);
293 ///
294 /// assert_eq!(1, duration.as_secs());
295 /// assert_eq!(123, duration.subsec_nanos());
296 /// ```
297 #[stable(feature = "duration_extras", since = "1.27.0")]
298 #[must_use]
299 #[inline]
300 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
301 pub const fn from_nanos(nanos: u64) -> Duration {
302 const NANOS_PER_SEC: u64 = self::NANOS_PER_SEC as u64;
303 let secs = nanos / NANOS_PER_SEC;
304 let subsec_nanos = (nanos % NANOS_PER_SEC) as u32;
305 // SAFETY: x % 1_000_000_000 < 1_000_000_000
306 let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_nanos) };
307
308 Duration { secs, nanos: subsec_nanos }
309 }
310
311 /// Creates a new `Duration` from the specified number of nanoseconds.
312 ///
313 /// # Panics
314 ///
315 /// Panics if the given number of nanoseconds is greater than [`Duration::MAX`].
316 ///
317 /// # Examples
318 ///
319 /// ```
320 /// use std::time::Duration;
321 ///
322 /// let nanos = 10_u128.pow(24) + 321;
323 /// let duration = Duration::from_nanos_u128(nanos);
324 ///
325 /// assert_eq!(10_u64.pow(15), duration.as_secs());
326 /// assert_eq!(321, duration.subsec_nanos());
327 /// ```
328 #[stable(feature = "duration_from_nanos_u128", since = "CURRENT_RUSTC_VERSION")]
329 #[rustc_const_stable(feature = "duration_from_nanos_u128", since = "CURRENT_RUSTC_VERSION")]
330 #[must_use]
331 #[inline]
332 #[track_caller]
333 #[rustc_allow_const_fn_unstable(const_trait_impl, const_convert)] // for `u64::try_from`
334 pub const fn from_nanos_u128(nanos: u128) -> Duration {
335 const NANOS_PER_SEC: u128 = self::NANOS_PER_SEC as u128;
336 let Ok(secs) = u64::try_from(nanos / NANOS_PER_SEC) else {
337 panic!("overflow in `Duration::from_nanos_u128`");
338 };
339 let subsec_nanos = (nanos % NANOS_PER_SEC) as u32;
340 // SAFETY: x % 1_000_000_000 < 1_000_000_000 also, subsec_nanos >= 0 since u128 >=0 and u32 >=0
341 let subsec_nanos = unsafe { Nanoseconds::new_unchecked(subsec_nanos) };
342
343 Duration { secs: secs as u64, nanos: subsec_nanos }
344 }
345
346 /// Creates a new `Duration` from the specified number of weeks.
347 ///
348 /// # Panics
349 ///
350 /// Panics if the given number of weeks overflows the `Duration` size.
351 ///
352 /// # Examples
353 ///
354 /// ```
355 /// #![feature(duration_constructors)]
356 /// use std::time::Duration;
357 ///
358 /// let duration = Duration::from_weeks(4);
359 ///
360 /// assert_eq!(4 * 7 * 24 * 60 * 60, duration.as_secs());
361 /// assert_eq!(0, duration.subsec_nanos());
362 /// ```
363 #[unstable(feature = "duration_constructors", issue = "120301")]
364 #[must_use]
365 #[inline]
366 pub const fn from_weeks(weeks: u64) -> Duration {
367 if weeks > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY * DAYS_PER_WEEK) {
368 panic!("overflow in Duration::from_weeks");
369 }
370
371 Duration::from_secs(weeks * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY * DAYS_PER_WEEK)
372 }
373
374 /// Creates a new `Duration` from the specified number of days.
375 ///
376 /// # Panics
377 ///
378 /// Panics if the given number of days overflows the `Duration` size.
379 ///
380 /// # Examples
381 ///
382 /// ```
383 /// #![feature(duration_constructors)]
384 /// use std::time::Duration;
385 ///
386 /// let duration = Duration::from_days(7);
387 ///
388 /// assert_eq!(7 * 24 * 60 * 60, duration.as_secs());
389 /// assert_eq!(0, duration.subsec_nanos());
390 /// ```
391 #[unstable(feature = "duration_constructors", issue = "120301")]
392 #[must_use]
393 #[inline]
394 pub const fn from_days(days: u64) -> Duration {
395 if days > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY) {
396 panic!("overflow in Duration::from_days");
397 }
398
399 Duration::from_secs(days * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY)
400 }
401
402 /// Creates a new `Duration` from the specified number of hours.
403 ///
404 /// # Panics
405 ///
406 /// Panics if the given number of hours overflows the `Duration` size.
407 ///
408 /// # Examples
409 ///
410 /// ```
411 /// use std::time::Duration;
412 ///
413 /// let duration = Duration::from_hours(6);
414 ///
415 /// assert_eq!(6 * 60 * 60, duration.as_secs());
416 /// assert_eq!(0, duration.subsec_nanos());
417 /// ```
418 #[stable(feature = "duration_constructors_lite", since = "1.91.0")]
419 #[rustc_const_stable(feature = "duration_constructors_lite", since = "1.91.0")]
420 #[must_use]
421 #[inline]
422 pub const fn from_hours(hours: u64) -> Duration {
423 if hours > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR) {
424 panic!("overflow in Duration::from_hours");
425 }
426
427 Duration::from_secs(hours * MINS_PER_HOUR * SECS_PER_MINUTE)
428 }
429
430 /// Creates a new `Duration` from the specified number of minutes.
431 ///
432 /// # Panics
433 ///
434 /// Panics if the given number of minutes overflows the `Duration` size.
435 ///
436 /// # Examples
437 ///
438 /// ```
439 /// use std::time::Duration;
440 ///
441 /// let duration = Duration::from_mins(10);
442 ///
443 /// assert_eq!(10 * 60, duration.as_secs());
444 /// assert_eq!(0, duration.subsec_nanos());
445 /// ```
446 #[stable(feature = "duration_constructors_lite", since = "1.91.0")]
447 #[rustc_const_stable(feature = "duration_constructors_lite", since = "1.91.0")]
448 #[must_use]
449 #[inline]
450 pub const fn from_mins(mins: u64) -> Duration {
451 if mins > u64::MAX / SECS_PER_MINUTE {
452 panic!("overflow in Duration::from_mins");
453 }
454
455 Duration::from_secs(mins * SECS_PER_MINUTE)
456 }
457
458 /// Returns true if this `Duration` spans no time.
459 ///
460 /// # Examples
461 ///
462 /// ```
463 /// use std::time::Duration;
464 ///
465 /// assert!(Duration::ZERO.is_zero());
466 /// assert!(Duration::new(0, 0).is_zero());
467 /// assert!(Duration::from_nanos(0).is_zero());
468 /// assert!(Duration::from_secs(0).is_zero());
469 ///
470 /// assert!(!Duration::new(1, 1).is_zero());
471 /// assert!(!Duration::from_nanos(1).is_zero());
472 /// assert!(!Duration::from_secs(1).is_zero());
473 /// ```
474 #[must_use]
475 #[stable(feature = "duration_zero", since = "1.53.0")]
476 #[rustc_const_stable(feature = "duration_zero", since = "1.53.0")]
477 #[inline]
478 pub const fn is_zero(&self) -> bool {
479 self.secs == 0 && self.nanos.as_inner() == 0
480 }
481
482 /// Returns the number of _whole_ seconds contained by this `Duration`.
483 ///
484 /// The returned value does not include the fractional (nanosecond) part of the
485 /// duration, which can be obtained using [`subsec_nanos`].
486 ///
487 /// # Examples
488 ///
489 /// ```
490 /// use std::time::Duration;
491 ///
492 /// let duration = Duration::new(5, 730_023_852);
493 /// assert_eq!(duration.as_secs(), 5);
494 /// ```
495 ///
496 /// To determine the total number of seconds represented by the `Duration`
497 /// including the fractional part, use [`as_secs_f64`] or [`as_secs_f32`]
498 ///
499 /// [`as_secs_f64`]: Duration::as_secs_f64
500 /// [`as_secs_f32`]: Duration::as_secs_f32
501 /// [`subsec_nanos`]: Duration::subsec_nanos
502 #[stable(feature = "duration", since = "1.3.0")]
503 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
504 #[must_use]
505 #[inline]
506 pub const fn as_secs(&self) -> u64 {
507 self.secs
508 }
509
510 /// Returns the fractional part of this `Duration`, in whole milliseconds.
511 ///
512 /// This method does **not** return the length of the duration when
513 /// represented by milliseconds. The returned number always represents a
514 /// fractional portion of a second (i.e., it is less than one thousand).
515 ///
516 /// # Examples
517 ///
518 /// ```
519 /// use std::time::Duration;
520 ///
521 /// let duration = Duration::from_millis(5_432);
522 /// assert_eq!(duration.as_secs(), 5);
523 /// assert_eq!(duration.subsec_millis(), 432);
524 /// ```
525 #[stable(feature = "duration_extras", since = "1.27.0")]
526 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
527 #[must_use]
528 #[inline]
529 pub const fn subsec_millis(&self) -> u32 {
530 self.nanos.as_inner() / NANOS_PER_MILLI
531 }
532
533 /// Returns the fractional part of this `Duration`, in whole microseconds.
534 ///
535 /// This method does **not** return the length of the duration when
536 /// represented by microseconds. The returned number always represents a
537 /// fractional portion of a second (i.e., it is less than one million).
538 ///
539 /// # Examples
540 ///
541 /// ```
542 /// use std::time::Duration;
543 ///
544 /// let duration = Duration::from_micros(1_234_567);
545 /// assert_eq!(duration.as_secs(), 1);
546 /// assert_eq!(duration.subsec_micros(), 234_567);
547 /// ```
548 #[stable(feature = "duration_extras", since = "1.27.0")]
549 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
550 #[must_use]
551 #[inline]
552 pub const fn subsec_micros(&self) -> u32 {
553 self.nanos.as_inner() / NANOS_PER_MICRO
554 }
555
556 /// Returns the fractional part of this `Duration`, in nanoseconds.
557 ///
558 /// This method does **not** return the length of the duration when
559 /// represented by nanoseconds. The returned number always represents a
560 /// fractional portion of a second (i.e., it is less than one billion).
561 ///
562 /// # Examples
563 ///
564 /// ```
565 /// use std::time::Duration;
566 ///
567 /// let duration = Duration::from_millis(5_010);
568 /// assert_eq!(duration.as_secs(), 5);
569 /// assert_eq!(duration.subsec_nanos(), 10_000_000);
570 /// ```
571 #[stable(feature = "duration", since = "1.3.0")]
572 #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")]
573 #[must_use]
574 #[inline]
575 pub const fn subsec_nanos(&self) -> u32 {
576 self.nanos.as_inner()
577 }
578
579 /// Returns the total number of whole milliseconds contained by this `Duration`.
580 ///
581 /// # Examples
582 ///
583 /// ```
584 /// use std::time::Duration;
585 ///
586 /// let duration = Duration::new(5, 730_023_852);
587 /// assert_eq!(duration.as_millis(), 5_730);
588 /// ```
589 #[stable(feature = "duration_as_u128", since = "1.33.0")]
590 #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
591 #[must_use]
592 #[inline]
593 pub const fn as_millis(&self) -> u128 {
594 self.secs as u128 * MILLIS_PER_SEC as u128
595 + (self.nanos.as_inner() / NANOS_PER_MILLI) as u128
596 }
597
598 /// Returns the total number of whole microseconds contained by this `Duration`.
599 ///
600 /// # Examples
601 ///
602 /// ```
603 /// use std::time::Duration;
604 ///
605 /// let duration = Duration::new(5, 730_023_852);
606 /// assert_eq!(duration.as_micros(), 5_730_023);
607 /// ```
608 #[stable(feature = "duration_as_u128", since = "1.33.0")]
609 #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
610 #[must_use]
611 #[inline]
612 pub const fn as_micros(&self) -> u128 {
613 self.secs as u128 * MICROS_PER_SEC as u128
614 + (self.nanos.as_inner() / NANOS_PER_MICRO) as u128
615 }
616
617 /// Returns the total number of nanoseconds contained by this `Duration`.
618 ///
619 /// # Examples
620 ///
621 /// ```
622 /// use std::time::Duration;
623 ///
624 /// let duration = Duration::new(5, 730_023_852);
625 /// assert_eq!(duration.as_nanos(), 5_730_023_852);
626 /// ```
627 #[stable(feature = "duration_as_u128", since = "1.33.0")]
628 #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")]
629 #[must_use]
630 #[inline]
631 pub const fn as_nanos(&self) -> u128 {
632 self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos.as_inner() as u128
633 }
634
635 /// Computes the absolute difference between `self` and `other`.
636 ///
637 /// # Examples
638 ///
639 /// ```
640 /// use std::time::Duration;
641 ///
642 /// assert_eq!(Duration::new(100, 0).abs_diff(Duration::new(80, 0)), Duration::new(20, 0));
643 /// assert_eq!(Duration::new(100, 400_000_000).abs_diff(Duration::new(110, 0)), Duration::new(9, 600_000_000));
644 /// ```
645 #[stable(feature = "duration_abs_diff", since = "1.81.0")]
646 #[rustc_const_stable(feature = "duration_abs_diff", since = "1.81.0")]
647 #[must_use = "this returns the result of the operation, \
648 without modifying the original"]
649 #[inline]
650 pub const fn abs_diff(self, other: Duration) -> Duration {
651 if let Some(res) = self.checked_sub(other) { res } else { other.checked_sub(self).unwrap() }
652 }
653
654 /// Checked `Duration` addition. Computes `self + other`, returning [`None`]
655 /// if overflow occurred.
656 ///
657 /// # Examples
658 ///
659 /// ```
660 /// use std::time::Duration;
661 ///
662 /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1)));
663 /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(u64::MAX, 0)), None);
664 /// ```
665 #[stable(feature = "duration_checked_ops", since = "1.16.0")]
666 #[must_use = "this returns the result of the operation, \
667 without modifying the original"]
668 #[inline]
669 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
670 pub const fn checked_add(self, rhs: Duration) -> Option<Duration> {
671 if let Some(mut secs) = self.secs.checked_add(rhs.secs) {
672 let mut nanos = self.nanos.as_inner() + rhs.nanos.as_inner();
673 if nanos >= NANOS_PER_SEC {
674 nanos -= NANOS_PER_SEC;
675 let Some(new_secs) = secs.checked_add(1) else {
676 return None;
677 };
678 secs = new_secs;
679 }
680 debug_assert!(nanos < NANOS_PER_SEC);
681 Some(Duration::new(secs, nanos))
682 } else {
683 None
684 }
685 }
686
687 /// Saturating `Duration` addition. Computes `self + other`, returning [`Duration::MAX`]
688 /// if overflow occurred.
689 ///
690 /// # Examples
691 ///
692 /// ```
693 /// #![feature(duration_constants)]
694 /// use std::time::Duration;
695 ///
696 /// assert_eq!(Duration::new(0, 0).saturating_add(Duration::new(0, 1)), Duration::new(0, 1));
697 /// assert_eq!(Duration::new(1, 0).saturating_add(Duration::new(u64::MAX, 0)), Duration::MAX);
698 /// ```
699 #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
700 #[must_use = "this returns the result of the operation, \
701 without modifying the original"]
702 #[inline]
703 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
704 pub const fn saturating_add(self, rhs: Duration) -> Duration {
705 match self.checked_add(rhs) {
706 Some(res) => res,
707 None => Duration::MAX,
708 }
709 }
710
711 /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`]
712 /// if the result would be negative or if overflow occurred.
713 ///
714 /// # Examples
715 ///
716 /// ```
717 /// use std::time::Duration;
718 ///
719 /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1)));
720 /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None);
721 /// ```
722 #[stable(feature = "duration_checked_ops", since = "1.16.0")]
723 #[must_use = "this returns the result of the operation, \
724 without modifying the original"]
725 #[inline]
726 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
727 pub const fn checked_sub(self, rhs: Duration) -> Option<Duration> {
728 if let Some(mut secs) = self.secs.checked_sub(rhs.secs) {
729 let nanos = if self.nanos.as_inner() >= rhs.nanos.as_inner() {
730 self.nanos.as_inner() - rhs.nanos.as_inner()
731 } else if let Some(sub_secs) = secs.checked_sub(1) {
732 secs = sub_secs;
733 self.nanos.as_inner() + NANOS_PER_SEC - rhs.nanos.as_inner()
734 } else {
735 return None;
736 };
737 debug_assert!(nanos < NANOS_PER_SEC);
738 Some(Duration::new(secs, nanos))
739 } else {
740 None
741 }
742 }
743
744 /// Saturating `Duration` subtraction. Computes `self - other`, returning [`Duration::ZERO`]
745 /// if the result would be negative or if overflow occurred.
746 ///
747 /// # Examples
748 ///
749 /// ```
750 /// use std::time::Duration;
751 ///
752 /// assert_eq!(Duration::new(0, 1).saturating_sub(Duration::new(0, 0)), Duration::new(0, 1));
753 /// assert_eq!(Duration::new(0, 0).saturating_sub(Duration::new(0, 1)), Duration::ZERO);
754 /// ```
755 #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
756 #[must_use = "this returns the result of the operation, \
757 without modifying the original"]
758 #[inline]
759 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
760 pub const fn saturating_sub(self, rhs: Duration) -> Duration {
761 match self.checked_sub(rhs) {
762 Some(res) => res,
763 None => Duration::ZERO,
764 }
765 }
766
767 /// Checked `Duration` multiplication. Computes `self * other`, returning
768 /// [`None`] if overflow occurred.
769 ///
770 /// # Examples
771 ///
772 /// ```
773 /// use std::time::Duration;
774 ///
775 /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2)));
776 /// assert_eq!(Duration::new(u64::MAX - 1, 0).checked_mul(2), None);
777 /// ```
778 #[stable(feature = "duration_checked_ops", since = "1.16.0")]
779 #[must_use = "this returns the result of the operation, \
780 without modifying the original"]
781 #[inline]
782 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
783 pub const fn checked_mul(self, rhs: u32) -> Option<Duration> {
784 // Multiply nanoseconds as u64, because it cannot overflow that way.
785 let total_nanos = self.nanos.as_inner() as u64 * rhs as u64;
786 let extra_secs = total_nanos / (NANOS_PER_SEC as u64);
787 let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32;
788 // FIXME(const-hack): use `and_then` once that is possible.
789 if let Some(s) = self.secs.checked_mul(rhs as u64) {
790 if let Some(secs) = s.checked_add(extra_secs) {
791 debug_assert!(nanos < NANOS_PER_SEC);
792 return Some(Duration::new(secs, nanos));
793 }
794 }
795 None
796 }
797
798 /// Saturating `Duration` multiplication. Computes `self * other`, returning
799 /// [`Duration::MAX`] if overflow occurred.
800 ///
801 /// # Examples
802 ///
803 /// ```
804 /// #![feature(duration_constants)]
805 /// use std::time::Duration;
806 ///
807 /// assert_eq!(Duration::new(0, 500_000_001).saturating_mul(2), Duration::new(1, 2));
808 /// assert_eq!(Duration::new(u64::MAX - 1, 0).saturating_mul(2), Duration::MAX);
809 /// ```
810 #[stable(feature = "duration_saturating_ops", since = "1.53.0")]
811 #[must_use = "this returns the result of the operation, \
812 without modifying the original"]
813 #[inline]
814 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
815 pub const fn saturating_mul(self, rhs: u32) -> Duration {
816 match self.checked_mul(rhs) {
817 Some(res) => res,
818 None => Duration::MAX,
819 }
820 }
821
822 /// Checked `Duration` division. Computes `self / other`, returning [`None`]
823 /// if `other == 0`.
824 ///
825 /// # Examples
826 ///
827 /// ```
828 /// use std::time::Duration;
829 ///
830 /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0)));
831 /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000)));
832 /// assert_eq!(Duration::new(2, 0).checked_div(0), None);
833 /// ```
834 #[stable(feature = "duration_checked_ops", since = "1.16.0")]
835 #[must_use = "this returns the result of the operation, \
836 without modifying the original"]
837 #[inline]
838 #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")]
839 pub const fn checked_div(self, rhs: u32) -> Option<Duration> {
840 if rhs != 0 {
841 let (secs, extra_secs) = (self.secs / (rhs as u64), self.secs % (rhs as u64));
842 let (mut nanos, extra_nanos) =
843 (self.nanos.as_inner() / rhs, self.nanos.as_inner() % rhs);
844 nanos +=
845 ((extra_secs * (NANOS_PER_SEC as u64) + extra_nanos as u64) / (rhs as u64)) as u32;
846 debug_assert!(nanos < NANOS_PER_SEC);
847 Some(Duration::new(secs, nanos))
848 } else {
849 None
850 }
851 }
852
853 /// Returns the number of seconds contained by this `Duration` as `f64`.
854 ///
855 /// The returned value includes the fractional (nanosecond) part of the duration.
856 ///
857 /// # Examples
858 /// ```
859 /// use std::time::Duration;
860 ///
861 /// let dur = Duration::new(2, 700_000_000);
862 /// assert_eq!(dur.as_secs_f64(), 2.7);
863 /// ```
864 #[stable(feature = "duration_float", since = "1.38.0")]
865 #[must_use]
866 #[inline]
867 #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
868 pub const fn as_secs_f64(&self) -> f64 {
869 (self.secs as f64) + (self.nanos.as_inner() as f64) / (NANOS_PER_SEC as f64)
870 }
871
872 /// Returns the number of seconds contained by this `Duration` as `f32`.
873 ///
874 /// The returned value includes the fractional (nanosecond) part of the duration.
875 ///
876 /// # Examples
877 /// ```
878 /// use std::time::Duration;
879 ///
880 /// let dur = Duration::new(2, 700_000_000);
881 /// assert_eq!(dur.as_secs_f32(), 2.7);
882 /// ```
883 #[stable(feature = "duration_float", since = "1.38.0")]
884 #[must_use]
885 #[inline]
886 #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
887 pub const fn as_secs_f32(&self) -> f32 {
888 (self.secs as f32) + (self.nanos.as_inner() as f32) / (NANOS_PER_SEC as f32)
889 }
890
891 /// Returns the number of milliseconds contained by this `Duration` as `f64`.
892 ///
893 /// The returned value includes the fractional (nanosecond) part of the duration.
894 ///
895 /// # Examples
896 /// ```
897 /// #![feature(duration_millis_float)]
898 /// use std::time::Duration;
899 ///
900 /// let dur = Duration::new(2, 345_678_000);
901 /// assert_eq!(dur.as_millis_f64(), 2_345.678);
902 /// ```
903 #[unstable(feature = "duration_millis_float", issue = "122451")]
904 #[must_use]
905 #[inline]
906 pub const fn as_millis_f64(&self) -> f64 {
907 (self.secs as f64) * (MILLIS_PER_SEC as f64)
908 + (self.nanos.as_inner() as f64) / (NANOS_PER_MILLI as f64)
909 }
910
911 /// Returns the number of milliseconds contained by this `Duration` as `f32`.
912 ///
913 /// The returned value includes the fractional (nanosecond) part of the duration.
914 ///
915 /// # Examples
916 /// ```
917 /// #![feature(duration_millis_float)]
918 /// use std::time::Duration;
919 ///
920 /// let dur = Duration::new(2, 345_678_000);
921 /// assert_eq!(dur.as_millis_f32(), 2_345.678);
922 /// ```
923 #[unstable(feature = "duration_millis_float", issue = "122451")]
924 #[must_use]
925 #[inline]
926 pub const fn as_millis_f32(&self) -> f32 {
927 (self.secs as f32) * (MILLIS_PER_SEC as f32)
928 + (self.nanos.as_inner() as f32) / (NANOS_PER_MILLI as f32)
929 }
930
931 /// Creates a new `Duration` from the specified number of seconds represented
932 /// as `f64`.
933 ///
934 /// # Panics
935 /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
936 ///
937 /// # Examples
938 /// ```
939 /// use std::time::Duration;
940 ///
941 /// let res = Duration::from_secs_f64(0.0);
942 /// assert_eq!(res, Duration::new(0, 0));
943 /// let res = Duration::from_secs_f64(1e-20);
944 /// assert_eq!(res, Duration::new(0, 0));
945 /// let res = Duration::from_secs_f64(4.2e-7);
946 /// assert_eq!(res, Duration::new(0, 420));
947 /// let res = Duration::from_secs_f64(2.7);
948 /// assert_eq!(res, Duration::new(2, 700_000_000));
949 /// let res = Duration::from_secs_f64(3e10);
950 /// assert_eq!(res, Duration::new(30_000_000_000, 0));
951 /// // subnormal float
952 /// let res = Duration::from_secs_f64(f64::from_bits(1));
953 /// assert_eq!(res, Duration::new(0, 0));
954 /// // conversion uses rounding
955 /// let res = Duration::from_secs_f64(0.999e-9);
956 /// assert_eq!(res, Duration::new(0, 1));
957 /// ```
958 #[stable(feature = "duration_float", since = "1.38.0")]
959 #[must_use]
960 #[inline]
961 pub fn from_secs_f64(secs: f64) -> Duration {
962 match Duration::try_from_secs_f64(secs) {
963 Ok(v) => v,
964 Err(e) => panic!("{e}"),
965 }
966 }
967
968 /// Creates a new `Duration` from the specified number of seconds represented
969 /// as `f32`.
970 ///
971 /// # Panics
972 /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite.
973 ///
974 /// # Examples
975 /// ```
976 /// use std::time::Duration;
977 ///
978 /// let res = Duration::from_secs_f32(0.0);
979 /// assert_eq!(res, Duration::new(0, 0));
980 /// let res = Duration::from_secs_f32(1e-20);
981 /// assert_eq!(res, Duration::new(0, 0));
982 /// let res = Duration::from_secs_f32(4.2e-7);
983 /// assert_eq!(res, Duration::new(0, 420));
984 /// let res = Duration::from_secs_f32(2.7);
985 /// assert_eq!(res, Duration::new(2, 700_000_048));
986 /// let res = Duration::from_secs_f32(3e10);
987 /// assert_eq!(res, Duration::new(30_000_001_024, 0));
988 /// // subnormal float
989 /// let res = Duration::from_secs_f32(f32::from_bits(1));
990 /// assert_eq!(res, Duration::new(0, 0));
991 /// // conversion uses rounding
992 /// let res = Duration::from_secs_f32(0.999e-9);
993 /// assert_eq!(res, Duration::new(0, 1));
994 /// ```
995 #[stable(feature = "duration_float", since = "1.38.0")]
996 #[must_use]
997 #[inline]
998 pub fn from_secs_f32(secs: f32) -> Duration {
999 match Duration::try_from_secs_f32(secs) {
1000 Ok(v) => v,
1001 Err(e) => panic!("{e}"),
1002 }
1003 }
1004
1005 /// Multiplies `Duration` by `f64`.
1006 ///
1007 /// # Panics
1008 /// This method will panic if result is negative, overflows `Duration` or not finite.
1009 ///
1010 /// # Examples
1011 /// ```
1012 /// use std::time::Duration;
1013 ///
1014 /// let dur = Duration::new(2, 700_000_000);
1015 /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000));
1016 /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0));
1017 /// ```
1018 #[stable(feature = "duration_float", since = "1.38.0")]
1019 #[must_use = "this returns the result of the operation, \
1020 without modifying the original"]
1021 #[inline]
1022 pub fn mul_f64(self, rhs: f64) -> Duration {
1023 Duration::from_secs_f64(rhs * self.as_secs_f64())
1024 }
1025
1026 /// Multiplies `Duration` by `f32`.
1027 ///
1028 /// # Panics
1029 /// This method will panic if result is negative, overflows `Duration` or not finite.
1030 ///
1031 /// # Examples
1032 /// ```
1033 /// use std::time::Duration;
1034 ///
1035 /// let dur = Duration::new(2, 700_000_000);
1036 /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_641));
1037 /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847_800, 0));
1038 /// ```
1039 #[stable(feature = "duration_float", since = "1.38.0")]
1040 #[must_use = "this returns the result of the operation, \
1041 without modifying the original"]
1042 #[inline]
1043 pub fn mul_f32(self, rhs: f32) -> Duration {
1044 Duration::from_secs_f32(rhs * self.as_secs_f32())
1045 }
1046
1047 /// Divides `Duration` by `f64`.
1048 ///
1049 /// # Panics
1050 /// This method will panic if result is negative, overflows `Duration` or not finite.
1051 ///
1052 /// # Examples
1053 /// ```
1054 /// use std::time::Duration;
1055 ///
1056 /// let dur = Duration::new(2, 700_000_000);
1057 /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611));
1058 /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_599));
1059 /// ```
1060 #[stable(feature = "duration_float", since = "1.38.0")]
1061 #[must_use = "this returns the result of the operation, \
1062 without modifying the original"]
1063 #[inline]
1064 pub fn div_f64(self, rhs: f64) -> Duration {
1065 Duration::from_secs_f64(self.as_secs_f64() / rhs)
1066 }
1067
1068 /// Divides `Duration` by `f32`.
1069 ///
1070 /// # Panics
1071 /// This method will panic if result is negative, overflows `Duration` or not finite.
1072 ///
1073 /// # Examples
1074 /// ```
1075 /// use std::time::Duration;
1076 ///
1077 /// let dur = Duration::new(2, 700_000_000);
1078 /// // note that due to rounding errors result is slightly
1079 /// // different from 0.859_872_611
1080 /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_580));
1081 /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_599));
1082 /// ```
1083 #[stable(feature = "duration_float", since = "1.38.0")]
1084 #[must_use = "this returns the result of the operation, \
1085 without modifying the original"]
1086 #[inline]
1087 pub fn div_f32(self, rhs: f32) -> Duration {
1088 Duration::from_secs_f32(self.as_secs_f32() / rhs)
1089 }
1090
1091 /// Divides `Duration` by `Duration` and returns `f64`.
1092 ///
1093 /// # Examples
1094 /// ```
1095 /// use std::time::Duration;
1096 ///
1097 /// let dur1 = Duration::new(2, 700_000_000);
1098 /// let dur2 = Duration::new(5, 400_000_000);
1099 /// assert_eq!(dur1.div_duration_f64(dur2), 0.5);
1100 /// ```
1101 #[stable(feature = "div_duration", since = "1.80.0")]
1102 #[must_use = "this returns the result of the operation, \
1103 without modifying the original"]
1104 #[inline]
1105 #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
1106 pub const fn div_duration_f64(self, rhs: Duration) -> f64 {
1107 let self_nanos =
1108 (self.secs as f64) * (NANOS_PER_SEC as f64) + (self.nanos.as_inner() as f64);
1109 let rhs_nanos = (rhs.secs as f64) * (NANOS_PER_SEC as f64) + (rhs.nanos.as_inner() as f64);
1110 self_nanos / rhs_nanos
1111 }
1112
1113 /// Divides `Duration` by `Duration` and returns `f32`.
1114 ///
1115 /// # Examples
1116 /// ```
1117 /// use std::time::Duration;
1118 ///
1119 /// let dur1 = Duration::new(2, 700_000_000);
1120 /// let dur2 = Duration::new(5, 400_000_000);
1121 /// assert_eq!(dur1.div_duration_f32(dur2), 0.5);
1122 /// ```
1123 #[stable(feature = "div_duration", since = "1.80.0")]
1124 #[must_use = "this returns the result of the operation, \
1125 without modifying the original"]
1126 #[inline]
1127 #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")]
1128 pub const fn div_duration_f32(self, rhs: Duration) -> f32 {
1129 let self_nanos =
1130 (self.secs as f32) * (NANOS_PER_SEC as f32) + (self.nanos.as_inner() as f32);
1131 let rhs_nanos = (rhs.secs as f32) * (NANOS_PER_SEC as f32) + (rhs.nanos.as_inner() as f32);
1132 self_nanos / rhs_nanos
1133 }
1134}
1135
1136#[stable(feature = "duration", since = "1.3.0")]
1137#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1138impl const Add for Duration {
1139 type Output = Duration;
1140
1141 #[inline]
1142 fn add(self, rhs: Duration) -> Duration {
1143 self.checked_add(rhs).expect("overflow when adding durations")
1144 }
1145}
1146
1147#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1148#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1149impl const AddAssign for Duration {
1150 #[inline]
1151 fn add_assign(&mut self, rhs: Duration) {
1152 *self = *self + rhs;
1153 }
1154}
1155
1156#[stable(feature = "duration", since = "1.3.0")]
1157#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1158impl const Sub for Duration {
1159 type Output = Duration;
1160
1161 #[inline]
1162 fn sub(self, rhs: Duration) -> Duration {
1163 self.checked_sub(rhs).expect("overflow when subtracting durations")
1164 }
1165}
1166
1167#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1168#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1169impl const SubAssign for Duration {
1170 #[inline]
1171 fn sub_assign(&mut self, rhs: Duration) {
1172 *self = *self - rhs;
1173 }
1174}
1175
1176#[stable(feature = "duration", since = "1.3.0")]
1177#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1178impl const Mul<u32> for Duration {
1179 type Output = Duration;
1180
1181 #[inline]
1182 fn mul(self, rhs: u32) -> Duration {
1183 self.checked_mul(rhs).expect("overflow when multiplying duration by scalar")
1184 }
1185}
1186
1187#[stable(feature = "symmetric_u32_duration_mul", since = "1.31.0")]
1188#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1189impl const Mul<Duration> for u32 {
1190 type Output = Duration;
1191
1192 #[inline]
1193 fn mul(self, rhs: Duration) -> Duration {
1194 rhs * self
1195 }
1196}
1197
1198#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1199#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1200impl const MulAssign<u32> for Duration {
1201 #[inline]
1202 fn mul_assign(&mut self, rhs: u32) {
1203 *self = *self * rhs;
1204 }
1205}
1206
1207#[stable(feature = "duration", since = "1.3.0")]
1208#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1209impl const Div<u32> for Duration {
1210 type Output = Duration;
1211
1212 #[inline]
1213 #[track_caller]
1214 fn div(self, rhs: u32) -> Duration {
1215 self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar")
1216 }
1217}
1218
1219#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
1220#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
1221impl const DivAssign<u32> for Duration {
1222 #[inline]
1223 #[track_caller]
1224 fn div_assign(&mut self, rhs: u32) {
1225 *self = *self / rhs;
1226 }
1227}
1228
1229macro_rules! sum_durations {
1230 ($iter:expr) => {{
1231 let mut total_secs: u64 = 0;
1232 let mut total_nanos: u64 = 0;
1233
1234 for entry in $iter {
1235 total_secs =
1236 total_secs.checked_add(entry.secs).expect("overflow in iter::sum over durations");
1237 total_nanos = match total_nanos.checked_add(entry.nanos.as_inner() as u64) {
1238 Some(n) => n,
1239 None => {
1240 total_secs = total_secs
1241 .checked_add(total_nanos / NANOS_PER_SEC as u64)
1242 .expect("overflow in iter::sum over durations");
1243 (total_nanos % NANOS_PER_SEC as u64) + entry.nanos.as_inner() as u64
1244 }
1245 };
1246 }
1247 total_secs = total_secs
1248 .checked_add(total_nanos / NANOS_PER_SEC as u64)
1249 .expect("overflow in iter::sum over durations");
1250 total_nanos = total_nanos % NANOS_PER_SEC as u64;
1251 Duration::new(total_secs, total_nanos as u32)
1252 }};
1253}
1254
1255#[stable(feature = "duration_sum", since = "1.16.0")]
1256impl Sum for Duration {
1257 fn sum<I: Iterator<Item = Duration>>(iter: I) -> Duration {
1258 sum_durations!(iter)
1259 }
1260}
1261
1262#[stable(feature = "duration_sum", since = "1.16.0")]
1263impl<'a> Sum<&'a Duration> for Duration {
1264 fn sum<I: Iterator<Item = &'a Duration>>(iter: I) -> Duration {
1265 sum_durations!(iter)
1266 }
1267}
1268
1269#[stable(feature = "duration_debug_impl", since = "1.27.0")]
1270impl fmt::Debug for Duration {
1271 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1272 /// Formats a floating point number in decimal notation.
1273 ///
1274 /// The number is given as the `integer_part` and a fractional part.
1275 /// The value of the fractional part is `fractional_part / divisor`. So
1276 /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100
1277 /// represents the number `3.012`. Trailing zeros are omitted.
1278 ///
1279 /// `divisor` must not be above 100_000_000. It also should be a power
1280 /// of 10, everything else doesn't make sense. `fractional_part` has
1281 /// to be less than `10 * divisor`!
1282 ///
1283 /// A prefix and postfix may be added. The whole thing is padded
1284 /// to the formatter's `width`, if specified.
1285 fn fmt_decimal(
1286 f: &mut fmt::Formatter<'_>,
1287 integer_part: u64,
1288 mut fractional_part: u32,
1289 mut divisor: u32,
1290 prefix: &str,
1291 postfix: &str,
1292 ) -> fmt::Result {
1293 // Encode the fractional part into a temporary buffer. The buffer
1294 // only need to hold 9 elements, because `fractional_part` has to
1295 // be smaller than 10^9. The buffer is prefilled with '0' digits
1296 // to simplify the code below.
1297 let mut buf = [b'0'; 9];
1298
1299 // The next digit is written at this position
1300 let mut pos = 0;
1301
1302 // We keep writing digits into the buffer while there are non-zero
1303 // digits left and we haven't written enough digits yet.
1304 while fractional_part > 0 && pos < f.precision().unwrap_or(9) {
1305 // Write new digit into the buffer
1306 buf[pos] = b'0' + (fractional_part / divisor) as u8;
1307
1308 fractional_part %= divisor;
1309 divisor /= 10;
1310 pos += 1;
1311 }
1312
1313 // If a precision < 9 was specified, there may be some non-zero
1314 // digits left that weren't written into the buffer. In that case we
1315 // need to perform rounding to match the semantics of printing
1316 // normal floating point numbers. However, we only need to do work
1317 // when rounding up. This happens if the first digit of the
1318 // remaining ones is >= 5.
1319 let integer_part = if fractional_part > 0 && fractional_part >= divisor * 5 {
1320 // Round up the number contained in the buffer. We go through
1321 // the buffer backwards and keep track of the carry.
1322 let mut rev_pos = pos;
1323 let mut carry = true;
1324 while carry && rev_pos > 0 {
1325 rev_pos -= 1;
1326
1327 // If the digit in the buffer is not '9', we just need to
1328 // increment it and can stop then (since we don't have a
1329 // carry anymore). Otherwise, we set it to '0' (overflow)
1330 // and continue.
1331 if buf[rev_pos] < b'9' {
1332 buf[rev_pos] += 1;
1333 carry = false;
1334 } else {
1335 buf[rev_pos] = b'0';
1336 }
1337 }
1338
1339 // If we still have the carry bit set, that means that we set
1340 // the whole buffer to '0's and need to increment the integer
1341 // part.
1342 if carry {
1343 // If `integer_part == u64::MAX` and precision < 9, any
1344 // carry of the overflow during rounding of the
1345 // `fractional_part` into the `integer_part` will cause the
1346 // `integer_part` itself to overflow. Avoid this by using an
1347 // `Option<u64>`, with `None` representing `u64::MAX + 1`.
1348 integer_part.checked_add(1)
1349 } else {
1350 Some(integer_part)
1351 }
1352 } else {
1353 Some(integer_part)
1354 };
1355
1356 // Determine the end of the buffer: if precision is set, we just
1357 // use as many digits from the buffer (capped to 9). If it isn't
1358 // set, we only use all digits up to the last non-zero one.
1359 let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos);
1360
1361 // This closure emits the formatted duration without emitting any
1362 // padding (padding is calculated below).
1363 let emit_without_padding = |f: &mut fmt::Formatter<'_>| {
1364 if let Some(integer_part) = integer_part {
1365 write!(f, "{}{}", prefix, integer_part)?;
1366 } else {
1367 // u64::MAX + 1 == 18446744073709551616
1368 write!(f, "{}18446744073709551616", prefix)?;
1369 }
1370
1371 // Write the decimal point and the fractional part (if any).
1372 if end > 0 {
1373 // SAFETY: We are only writing ASCII digits into the buffer and
1374 // it was initialized with '0's, so it contains valid UTF8.
1375 let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) };
1376
1377 // If the user request a precision > 9, we pad '0's at the end.
1378 let w = f.precision().unwrap_or(pos);
1379 write!(f, ".{:0<width$}", s, width = w)?;
1380 }
1381
1382 write!(f, "{}", postfix)
1383 };
1384
1385 match f.width() {
1386 None => {
1387 // No `width` specified. There's no need to calculate the
1388 // length of the output in this case, just emit it.
1389 emit_without_padding(f)
1390 }
1391 Some(requested_w) => {
1392 // A `width` was specified. Calculate the actual width of
1393 // the output in order to calculate the required padding.
1394 // It consists of 4 parts:
1395 // 1. The prefix: is either "+" or "", so we can just use len().
1396 // 2. The postfix: can be "µs" so we have to count UTF8 characters.
1397 let mut actual_w = prefix.len() + postfix.chars().count();
1398 // 3. The integer part:
1399 if let Some(integer_part) = integer_part {
1400 if let Some(log) = integer_part.checked_ilog10() {
1401 // integer_part is > 0, so has length log10(x)+1
1402 actual_w += 1 + log as usize;
1403 } else {
1404 // integer_part is 0, so has length 1.
1405 actual_w += 1;
1406 }
1407 } else {
1408 // integer_part is u64::MAX + 1, so has length 20
1409 actual_w += 20;
1410 }
1411 // 4. The fractional part (if any):
1412 if end > 0 {
1413 let frac_part_w = f.precision().unwrap_or(pos);
1414 actual_w += 1 + frac_part_w;
1415 }
1416
1417 if requested_w <= actual_w {
1418 // Output is already longer than `width`, so don't pad.
1419 emit_without_padding(f)
1420 } else {
1421 // We need to add padding. Use the `Formatter::padding` helper function.
1422 let default_align = fmt::Alignment::Left;
1423 let post_padding =
1424 f.padding((requested_w - actual_w) as u16, default_align)?;
1425 emit_without_padding(f)?;
1426 post_padding.write(f)
1427 }
1428 }
1429 }
1430 }
1431
1432 // Print leading '+' sign if requested
1433 let prefix = if f.sign_plus() { "+" } else { "" };
1434
1435 if self.secs > 0 {
1436 fmt_decimal(f, self.secs, self.nanos.as_inner(), NANOS_PER_SEC / 10, prefix, "s")
1437 } else if self.nanos.as_inner() >= NANOS_PER_MILLI {
1438 fmt_decimal(
1439 f,
1440 (self.nanos.as_inner() / NANOS_PER_MILLI) as u64,
1441 self.nanos.as_inner() % NANOS_PER_MILLI,
1442 NANOS_PER_MILLI / 10,
1443 prefix,
1444 "ms",
1445 )
1446 } else if self.nanos.as_inner() >= NANOS_PER_MICRO {
1447 fmt_decimal(
1448 f,
1449 (self.nanos.as_inner() / NANOS_PER_MICRO) as u64,
1450 self.nanos.as_inner() % NANOS_PER_MICRO,
1451 NANOS_PER_MICRO / 10,
1452 prefix,
1453 "µs",
1454 )
1455 } else {
1456 fmt_decimal(f, self.nanos.as_inner() as u64, 0, 1, prefix, "ns")
1457 }
1458 }
1459}
1460
1461/// An error which can be returned when converting a floating-point value of seconds
1462/// into a [`Duration`].
1463///
1464/// This error is used as the error type for [`Duration::try_from_secs_f32`] and
1465/// [`Duration::try_from_secs_f64`].
1466///
1467/// # Example
1468///
1469/// ```
1470/// use std::time::Duration;
1471///
1472/// if let Err(e) = Duration::try_from_secs_f32(-1.0) {
1473/// println!("Failed conversion to Duration: {e}");
1474/// }
1475/// ```
1476#[derive(Debug, Clone, PartialEq, Eq)]
1477#[stable(feature = "duration_checked_float", since = "1.66.0")]
1478pub struct TryFromFloatSecsError {
1479 kind: TryFromFloatSecsErrorKind,
1480}
1481
1482#[stable(feature = "duration_checked_float", since = "1.66.0")]
1483impl fmt::Display for TryFromFloatSecsError {
1484 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1485 match self.kind {
1486 TryFromFloatSecsErrorKind::Negative => {
1487 "cannot convert float seconds to Duration: value is negative"
1488 }
1489 TryFromFloatSecsErrorKind::OverflowOrNan => {
1490 "cannot convert float seconds to Duration: value is either too big or NaN"
1491 }
1492 }
1493 .fmt(f)
1494 }
1495}
1496
1497#[derive(Debug, Clone, PartialEq, Eq)]
1498enum TryFromFloatSecsErrorKind {
1499 // Value is negative.
1500 Negative,
1501 // Value is either too big to be represented as `Duration` or `NaN`.
1502 OverflowOrNan,
1503}
1504
1505macro_rules! try_from_secs {
1506 (
1507 secs = $secs: expr,
1508 mantissa_bits = $mant_bits: literal,
1509 exponent_bits = $exp_bits: literal,
1510 offset = $offset: literal,
1511 bits_ty = $bits_ty:ty,
1512 double_ty = $double_ty:ty,
1513 ) => {{
1514 const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2;
1515 const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1;
1516 const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1;
1517
1518 if $secs < 0.0 {
1519 return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::Negative });
1520 }
1521
1522 let bits = $secs.to_bits();
1523 let mant = (bits & MANT_MASK) | (MANT_MASK + 1);
1524 let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP;
1525
1526 let (secs, nanos) = if exp < -31 {
1527 // the input represents less than 1ns and can not be rounded to it
1528 (0u64, 0u32)
1529 } else if exp < 0 {
1530 // the input is less than 1 second
1531 let t = <$double_ty>::from(mant) << ($offset + exp);
1532 let nanos_offset = $mant_bits + $offset;
1533 let nanos_tmp = u128::from(NANOS_PER_SEC) * u128::from(t);
1534 let nanos = (nanos_tmp >> nanos_offset) as u32;
1535
1536 let rem_mask = (1 << nanos_offset) - 1;
1537 let rem_msb_mask = 1 << (nanos_offset - 1);
1538 let rem = nanos_tmp & rem_mask;
1539 let is_tie = rem == rem_msb_mask;
1540 let is_even = (nanos & 1) == 0;
1541 let rem_msb = nanos_tmp & rem_msb_mask == 0;
1542 let add_ns = !(rem_msb || (is_even && is_tie));
1543
1544 // f32 does not have enough precision to trigger the second branch
1545 // since it can not represent numbers between 0.999_999_940_395 and 1.0.
1546 let nanos = nanos + add_ns as u32;
1547 if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (0, nanos) } else { (1, 0) }
1548 } else if exp < $mant_bits {
1549 let secs = u64::from(mant >> ($mant_bits - exp));
1550 let t = <$double_ty>::from((mant << exp) & MANT_MASK);
1551 let nanos_offset = $mant_bits;
1552 let nanos_tmp = <$double_ty>::from(NANOS_PER_SEC) * t;
1553 let nanos = (nanos_tmp >> nanos_offset) as u32;
1554
1555 let rem_mask = (1 << nanos_offset) - 1;
1556 let rem_msb_mask = 1 << (nanos_offset - 1);
1557 let rem = nanos_tmp & rem_mask;
1558 let is_tie = rem == rem_msb_mask;
1559 let is_even = (nanos & 1) == 0;
1560 let rem_msb = nanos_tmp & rem_msb_mask == 0;
1561 let add_ns = !(rem_msb || (is_even && is_tie));
1562
1563 // f32 does not have enough precision to trigger the second branch.
1564 // For example, it can not represent numbers between 1.999_999_880...
1565 // and 2.0. Bigger values result in even smaller precision of the
1566 // fractional part.
1567 let nanos = nanos + add_ns as u32;
1568 if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) {
1569 (secs, nanos)
1570 } else {
1571 (secs + 1, 0)
1572 }
1573 } else if exp < 64 {
1574 // the input has no fractional part
1575 let secs = u64::from(mant) << (exp - $mant_bits);
1576 (secs, 0)
1577 } else {
1578 return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::OverflowOrNan });
1579 };
1580
1581 Ok(Duration::new(secs, nanos))
1582 }};
1583}
1584
1585impl Duration {
1586 /// The checked version of [`from_secs_f32`].
1587 ///
1588 /// [`from_secs_f32`]: Duration::from_secs_f32
1589 ///
1590 /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
1591 ///
1592 /// # Examples
1593 /// ```
1594 /// use std::time::Duration;
1595 ///
1596 /// let res = Duration::try_from_secs_f32(0.0);
1597 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1598 /// let res = Duration::try_from_secs_f32(1e-20);
1599 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1600 /// let res = Duration::try_from_secs_f32(4.2e-7);
1601 /// assert_eq!(res, Ok(Duration::new(0, 420)));
1602 /// let res = Duration::try_from_secs_f32(2.7);
1603 /// assert_eq!(res, Ok(Duration::new(2, 700_000_048)));
1604 /// let res = Duration::try_from_secs_f32(3e10);
1605 /// assert_eq!(res, Ok(Duration::new(30_000_001_024, 0)));
1606 /// // subnormal float:
1607 /// let res = Duration::try_from_secs_f32(f32::from_bits(1));
1608 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1609 ///
1610 /// let res = Duration::try_from_secs_f32(-5.0);
1611 /// assert!(res.is_err());
1612 /// let res = Duration::try_from_secs_f32(f32::NAN);
1613 /// assert!(res.is_err());
1614 /// let res = Duration::try_from_secs_f32(2e19);
1615 /// assert!(res.is_err());
1616 ///
1617 /// // the conversion uses rounding with tie resolution to even
1618 /// let res = Duration::try_from_secs_f32(0.999e-9);
1619 /// assert_eq!(res, Ok(Duration::new(0, 1)));
1620 ///
1621 /// // this float represents exactly 976562.5e-9
1622 /// let val = f32::from_bits(0x3A80_0000);
1623 /// let res = Duration::try_from_secs_f32(val);
1624 /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
1625 ///
1626 /// // this float represents exactly 2929687.5e-9
1627 /// let val = f32::from_bits(0x3B40_0000);
1628 /// let res = Duration::try_from_secs_f32(val);
1629 /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
1630 ///
1631 /// // this float represents exactly 1.000_976_562_5
1632 /// let val = f32::from_bits(0x3F802000);
1633 /// let res = Duration::try_from_secs_f32(val);
1634 /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
1635 ///
1636 /// // this float represents exactly 1.002_929_687_5
1637 /// let val = f32::from_bits(0x3F806000);
1638 /// let res = Duration::try_from_secs_f32(val);
1639 /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
1640 /// ```
1641 #[stable(feature = "duration_checked_float", since = "1.66.0")]
1642 #[inline]
1643 pub fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError> {
1644 try_from_secs!(
1645 secs = secs,
1646 mantissa_bits = 23,
1647 exponent_bits = 8,
1648 offset = 41,
1649 bits_ty = u32,
1650 double_ty = u64,
1651 )
1652 }
1653
1654 /// The checked version of [`from_secs_f64`].
1655 ///
1656 /// [`from_secs_f64`]: Duration::from_secs_f64
1657 ///
1658 /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite.
1659 ///
1660 /// # Examples
1661 /// ```
1662 /// use std::time::Duration;
1663 ///
1664 /// let res = Duration::try_from_secs_f64(0.0);
1665 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1666 /// let res = Duration::try_from_secs_f64(1e-20);
1667 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1668 /// let res = Duration::try_from_secs_f64(4.2e-7);
1669 /// assert_eq!(res, Ok(Duration::new(0, 420)));
1670 /// let res = Duration::try_from_secs_f64(2.7);
1671 /// assert_eq!(res, Ok(Duration::new(2, 700_000_000)));
1672 /// let res = Duration::try_from_secs_f64(3e10);
1673 /// assert_eq!(res, Ok(Duration::new(30_000_000_000, 0)));
1674 /// // subnormal float
1675 /// let res = Duration::try_from_secs_f64(f64::from_bits(1));
1676 /// assert_eq!(res, Ok(Duration::new(0, 0)));
1677 ///
1678 /// let res = Duration::try_from_secs_f64(-5.0);
1679 /// assert!(res.is_err());
1680 /// let res = Duration::try_from_secs_f64(f64::NAN);
1681 /// assert!(res.is_err());
1682 /// let res = Duration::try_from_secs_f64(2e19);
1683 /// assert!(res.is_err());
1684 ///
1685 /// // the conversion uses rounding with tie resolution to even
1686 /// let res = Duration::try_from_secs_f64(0.999e-9);
1687 /// assert_eq!(res, Ok(Duration::new(0, 1)));
1688 /// let res = Duration::try_from_secs_f64(0.999_999_999_499);
1689 /// assert_eq!(res, Ok(Duration::new(0, 999_999_999)));
1690 /// let res = Duration::try_from_secs_f64(0.999_999_999_501);
1691 /// assert_eq!(res, Ok(Duration::new(1, 0)));
1692 /// let res = Duration::try_from_secs_f64(42.999_999_999_499);
1693 /// assert_eq!(res, Ok(Duration::new(42, 999_999_999)));
1694 /// let res = Duration::try_from_secs_f64(42.999_999_999_501);
1695 /// assert_eq!(res, Ok(Duration::new(43, 0)));
1696 ///
1697 /// // this float represents exactly 976562.5e-9
1698 /// let val = f64::from_bits(0x3F50_0000_0000_0000);
1699 /// let res = Duration::try_from_secs_f64(val);
1700 /// assert_eq!(res, Ok(Duration::new(0, 976_562)));
1701 ///
1702 /// // this float represents exactly 2929687.5e-9
1703 /// let val = f64::from_bits(0x3F68_0000_0000_0000);
1704 /// let res = Duration::try_from_secs_f64(val);
1705 /// assert_eq!(res, Ok(Duration::new(0, 2_929_688)));
1706 ///
1707 /// // this float represents exactly 1.000_976_562_5
1708 /// let val = f64::from_bits(0x3FF0_0400_0000_0000);
1709 /// let res = Duration::try_from_secs_f64(val);
1710 /// assert_eq!(res, Ok(Duration::new(1, 976_562)));
1711 ///
1712 /// // this float represents exactly 1.002_929_687_5
1713 /// let val = f64::from_bits(0x3_FF00_C000_0000_000);
1714 /// let res = Duration::try_from_secs_f64(val);
1715 /// assert_eq!(res, Ok(Duration::new(1, 2_929_688)));
1716 /// ```
1717 #[stable(feature = "duration_checked_float", since = "1.66.0")]
1718 #[inline]
1719 pub fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError> {
1720 try_from_secs!(
1721 secs = secs,
1722 mantissa_bits = 52,
1723 exponent_bits = 11,
1724 offset = 44,
1725 bits_ty = u64,
1726 double_ty = u128,
1727 )
1728 }
1729}