core/hash/mod.rs
1//! Generic hashing support.
2//!
3//! This module provides a generic way to compute the [hash] of a value.
4//! Hashes are most commonly used with [`HashMap`] and [`HashSet`].
5//!
6//! [hash]: https://en.wikipedia.org/wiki/Hash_function
7//! [`HashMap`]: ../../std/collections/struct.HashMap.html
8//! [`HashSet`]: ../../std/collections/struct.HashSet.html
9//!
10//! The simplest way to make a type hashable is to use `#[derive(Hash)]`:
11//!
12//! # Examples
13//!
14//! ```rust
15//! use std::hash::{DefaultHasher, Hash, Hasher};
16//!
17//! #[derive(Hash)]
18//! struct Person {
19//! id: u32,
20//! name: String,
21//! phone: u64,
22//! }
23//!
24//! let person1 = Person {
25//! id: 5,
26//! name: "Janet".to_string(),
27//! phone: 555_666_7777,
28//! };
29//! let person2 = Person {
30//! id: 5,
31//! name: "Bob".to_string(),
32//! phone: 555_666_7777,
33//! };
34//!
35//! assert!(calculate_hash(&person1) != calculate_hash(&person2));
36//!
37//! fn calculate_hash<T: Hash>(t: &T) -> u64 {
38//! let mut s = DefaultHasher::new();
39//! t.hash(&mut s);
40//! s.finish()
41//! }
42//! ```
43//!
44//! If you need more control over how a value is hashed, you need to implement
45//! the [`Hash`] trait:
46//!
47//! ```rust
48//! use std::hash::{DefaultHasher, Hash, Hasher};
49//!
50//! struct Person {
51//! id: u32,
52//! # #[allow(dead_code)]
53//! name: String,
54//! phone: u64,
55//! }
56//!
57//! impl Hash for Person {
58//! fn hash<H: Hasher>(&self, state: &mut H) {
59//! self.id.hash(state);
60//! self.phone.hash(state);
61//! }
62//! }
63//!
64//! let person1 = Person {
65//! id: 5,
66//! name: "Janet".to_string(),
67//! phone: 555_666_7777,
68//! };
69//! let person2 = Person {
70//! id: 5,
71//! name: "Bob".to_string(),
72//! phone: 555_666_7777,
73//! };
74//!
75//! assert_eq!(calculate_hash(&person1), calculate_hash(&person2));
76//!
77//! fn calculate_hash<T: Hash>(t: &T) -> u64 {
78//! let mut s = DefaultHasher::new();
79//! t.hash(&mut s);
80//! s.finish()
81//! }
82//! ```
83
84#![stable(feature = "rust1", since = "1.0.0")]
85
86#[stable(feature = "rust1", since = "1.0.0")]
87#[allow(deprecated)]
88pub use self::sip::SipHasher;
89#[unstable(feature = "hashmap_internals", issue = "none")]
90#[doc(hidden)]
91pub use self::sip::SipHasher13;
92use crate::{fmt, marker};
93
94mod sip;
95
96/// A hashable type.
97///
98/// Types implementing `Hash` are able to be [`hash`]ed with an instance of
99/// [`Hasher`].
100///
101/// ## Implementing `Hash`
102///
103/// You can derive `Hash` with `#[derive(Hash)]` if all fields implement `Hash`.
104/// The resulting hash will be the combination of the values from calling
105/// [`hash`] on each field.
106///
107/// ```
108/// #[derive(Hash)]
109/// struct Rustacean {
110/// name: String,
111/// country: String,
112/// }
113/// ```
114///
115/// If you need more control over how a value is hashed, you can of course
116/// implement the `Hash` trait yourself:
117///
118/// ```
119/// use std::hash::{Hash, Hasher};
120///
121/// struct Person {
122/// id: u32,
123/// name: String,
124/// phone: u64,
125/// }
126///
127/// impl Hash for Person {
128/// fn hash<H: Hasher>(&self, state: &mut H) {
129/// self.id.hash(state);
130/// self.phone.hash(state);
131/// }
132/// }
133/// ```
134///
135/// ## `Hash` and `Eq`
136///
137/// When implementing both `Hash` and [`Eq`], it is important that the following
138/// property holds:
139///
140/// ```text
141/// k1 == k2 -> hash(k1) == hash(k2)
142/// ```
143///
144/// In other words, if two keys are equal, their hashes must also be equal.
145/// [`HashMap`] and [`HashSet`] both rely on this behavior.
146///
147/// Thankfully, you won't need to worry about upholding this property when
148/// deriving both [`Eq`] and `Hash` with `#[derive(PartialEq, Eq, Hash)]`.
149///
150/// Violating this property is a logic error. The behavior resulting from a logic error is not
151/// specified, but users of the trait must ensure that such logic errors do *not* result in
152/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
153/// methods.
154///
155/// ## Prefix collisions
156///
157/// Implementations of `hash` should ensure that the data they
158/// pass to the `Hasher` are prefix-free. That is,
159/// values which are not equal should cause two different sequences of values to be written,
160/// and neither of the two sequences should be a prefix of the other.
161///
162/// For example, the standard implementation of [`Hash` for `&str`][impl] passes an extra
163/// `0xFF` byte to the `Hasher` so that the values `("ab", "c")` and `("a",
164/// "bc")` hash differently.
165///
166/// ## Portability
167///
168/// Due to differences in endianness and type sizes, data fed by `Hash` to a `Hasher`
169/// should not be considered portable across platforms. Additionally the data passed by most
170/// standard library types should not be considered stable between compiler versions.
171///
172/// This means tests shouldn't probe hard-coded hash values or data fed to a `Hasher` and
173/// instead should check consistency with `Eq`.
174///
175/// Serialization formats intended to be portable between platforms or compiler versions should
176/// either avoid encoding hashes or only rely on `Hash` and `Hasher` implementations that
177/// provide additional guarantees.
178///
179/// [`HashMap`]: ../../std/collections/struct.HashMap.html
180/// [`HashSet`]: ../../std/collections/struct.HashSet.html
181/// [`hash`]: Hash::hash
182/// [impl]: ../../std/primitive.str.html#impl-Hash-for-str
183#[stable(feature = "rust1", since = "1.0.0")]
184#[rustc_diagnostic_item = "Hash"]
185pub trait Hash: marker::PointeeSized {
186 /// Feeds this value into the given [`Hasher`].
187 ///
188 /// # Examples
189 ///
190 /// ```
191 /// use std::hash::{DefaultHasher, Hash, Hasher};
192 ///
193 /// let mut hasher = DefaultHasher::new();
194 /// 7920.hash(&mut hasher);
195 /// println!("Hash is {:x}!", hasher.finish());
196 /// ```
197 #[stable(feature = "rust1", since = "1.0.0")]
198 fn hash<H: Hasher>(&self, state: &mut H);
199
200 /// Feeds a slice of this type into the given [`Hasher`].
201 ///
202 /// This method is meant as a convenience, but its implementation is
203 /// also explicitly left unspecified. It isn't guaranteed to be
204 /// equivalent to repeated calls of [`hash`] and implementations of
205 /// [`Hash`] should keep that in mind and call [`hash`] themselves
206 /// if the slice isn't treated as a whole unit in the [`PartialEq`]
207 /// implementation.
208 ///
209 /// For example, a [`VecDeque`] implementation might naïvely call
210 /// [`as_slices`] and then [`hash_slice`] on each slice, but this
211 /// is wrong since the two slices can change with a call to
212 /// [`make_contiguous`] without affecting the [`PartialEq`]
213 /// result. Since these slices aren't treated as singular
214 /// units, and instead part of a larger deque, this method cannot
215 /// be used.
216 ///
217 /// # Examples
218 ///
219 /// ```
220 /// use std::hash::{DefaultHasher, Hash, Hasher};
221 ///
222 /// let mut hasher = DefaultHasher::new();
223 /// let numbers = [6, 28, 496, 8128];
224 /// Hash::hash_slice(&numbers, &mut hasher);
225 /// println!("Hash is {:x}!", hasher.finish());
226 /// ```
227 ///
228 /// [`VecDeque`]: ../../std/collections/struct.VecDeque.html
229 /// [`as_slices`]: ../../std/collections/struct.VecDeque.html#method.as_slices
230 /// [`make_contiguous`]: ../../std/collections/struct.VecDeque.html#method.make_contiguous
231 /// [`hash`]: Hash::hash
232 /// [`hash_slice`]: Hash::hash_slice
233 #[stable(feature = "hash_slice", since = "1.3.0")]
234 fn hash_slice<H: Hasher>(data: &[Self], state: &mut H)
235 where
236 Self: Sized,
237 {
238 for piece in data {
239 piece.hash(state)
240 }
241 }
242}
243
244// Separate module to reexport the macro `Hash` from prelude without the trait `Hash`.
245pub(crate) mod macros {
246 /// Derive macro generating an impl of the trait `Hash`.
247 #[rustc_builtin_macro]
248 #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
249 #[allow_internal_unstable(core_intrinsics)]
250 pub macro Hash($item:item) {
251 /* compiler built-in */
252 }
253}
254#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
255#[doc(inline)]
256pub use macros::Hash;
257
258/// A trait for hashing an arbitrary stream of bytes.
259///
260/// Instances of `Hasher` usually represent state that is changed while hashing
261/// data.
262///
263/// `Hasher` provides a fairly basic interface for retrieving the generated hash
264/// (with [`finish`]), and writing integers as well as slices of bytes into an
265/// instance (with [`write`] and [`write_u8`] etc.). Most of the time, `Hasher`
266/// instances are used in conjunction with the [`Hash`] trait.
267///
268/// This trait provides no guarantees about how the various `write_*` methods are
269/// defined and implementations of [`Hash`] should not assume that they work one
270/// way or another. You cannot assume, for example, that a [`write_u32`] call is
271/// equivalent to four calls of [`write_u8`]. Nor can you assume that adjacent
272/// `write` calls are merged, so it's possible, for example, that
273/// ```
274/// # fn foo(hasher: &mut impl std::hash::Hasher) {
275/// hasher.write(&[1, 2]);
276/// hasher.write(&[3, 4, 5, 6]);
277/// # }
278/// ```
279/// and
280/// ```
281/// # fn foo(hasher: &mut impl std::hash::Hasher) {
282/// hasher.write(&[1, 2, 3, 4]);
283/// hasher.write(&[5, 6]);
284/// # }
285/// ```
286/// end up producing different hashes.
287///
288/// Thus to produce the same hash value, [`Hash`] implementations must ensure
289/// for equivalent items that exactly the same sequence of calls is made -- the
290/// same methods with the same parameters in the same order.
291///
292/// # Examples
293///
294/// ```
295/// use std::hash::{DefaultHasher, Hasher};
296///
297/// let mut hasher = DefaultHasher::new();
298///
299/// hasher.write_u32(1989);
300/// hasher.write_u8(11);
301/// hasher.write_u8(9);
302/// hasher.write(b"Huh?");
303///
304/// println!("Hash is {:x}!", hasher.finish());
305/// ```
306///
307/// [`finish`]: Hasher::finish
308/// [`write`]: Hasher::write
309/// [`write_u8`]: Hasher::write_u8
310/// [`write_u32`]: Hasher::write_u32
311#[stable(feature = "rust1", since = "1.0.0")]
312pub trait Hasher {
313 /// Returns the hash value for the values written so far.
314 ///
315 /// Despite its name, the method does not reset the hasher’s internal
316 /// state. Additional [`write`]s will continue from the current value.
317 /// If you need to start a fresh hash value, you will have to create
318 /// a new hasher.
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// use std::hash::{DefaultHasher, Hasher};
324 ///
325 /// let mut hasher = DefaultHasher::new();
326 /// hasher.write(b"Cool!");
327 ///
328 /// println!("Hash is {:x}!", hasher.finish());
329 /// ```
330 ///
331 /// [`write`]: Hasher::write
332 #[stable(feature = "rust1", since = "1.0.0")]
333 #[must_use]
334 fn finish(&self) -> u64;
335
336 /// Writes some data into this `Hasher`.
337 ///
338 /// # Examples
339 ///
340 /// ```
341 /// use std::hash::{DefaultHasher, Hasher};
342 ///
343 /// let mut hasher = DefaultHasher::new();
344 /// let data = [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef];
345 ///
346 /// hasher.write(&data);
347 ///
348 /// println!("Hash is {:x}!", hasher.finish());
349 /// ```
350 ///
351 /// # Note to Implementers
352 ///
353 /// You generally should not do length-prefixing as part of implementing
354 /// this method. It's up to the [`Hash`] implementation to call
355 /// [`Hasher::write_length_prefix`] before sequences that need it.
356 #[stable(feature = "rust1", since = "1.0.0")]
357 fn write(&mut self, bytes: &[u8]);
358
359 /// Writes a single `u8` into this hasher.
360 #[inline]
361 #[stable(feature = "hasher_write", since = "1.3.0")]
362 fn write_u8(&mut self, i: u8) {
363 self.write(&[i])
364 }
365 /// Writes a single `u16` into this hasher.
366 #[inline]
367 #[stable(feature = "hasher_write", since = "1.3.0")]
368 fn write_u16(&mut self, i: u16) {
369 self.write(&i.to_ne_bytes())
370 }
371 /// Writes a single `u32` into this hasher.
372 #[inline]
373 #[stable(feature = "hasher_write", since = "1.3.0")]
374 fn write_u32(&mut self, i: u32) {
375 self.write(&i.to_ne_bytes())
376 }
377 /// Writes a single `u64` into this hasher.
378 #[inline]
379 #[stable(feature = "hasher_write", since = "1.3.0")]
380 fn write_u64(&mut self, i: u64) {
381 self.write(&i.to_ne_bytes())
382 }
383 /// Writes a single `u128` into this hasher.
384 #[inline]
385 #[stable(feature = "i128", since = "1.26.0")]
386 fn write_u128(&mut self, i: u128) {
387 self.write(&i.to_ne_bytes())
388 }
389 /// Writes a single `usize` into this hasher.
390 #[inline]
391 #[stable(feature = "hasher_write", since = "1.3.0")]
392 fn write_usize(&mut self, i: usize) {
393 self.write(&i.to_ne_bytes())
394 }
395
396 /// Writes a single `i8` into this hasher.
397 #[inline]
398 #[stable(feature = "hasher_write", since = "1.3.0")]
399 fn write_i8(&mut self, i: i8) {
400 self.write_u8(i as u8)
401 }
402 /// Writes a single `i16` into this hasher.
403 #[inline]
404 #[stable(feature = "hasher_write", since = "1.3.0")]
405 fn write_i16(&mut self, i: i16) {
406 self.write_u16(i as u16)
407 }
408 /// Writes a single `i32` into this hasher.
409 #[inline]
410 #[stable(feature = "hasher_write", since = "1.3.0")]
411 fn write_i32(&mut self, i: i32) {
412 self.write_u32(i as u32)
413 }
414 /// Writes a single `i64` into this hasher.
415 #[inline]
416 #[stable(feature = "hasher_write", since = "1.3.0")]
417 fn write_i64(&mut self, i: i64) {
418 self.write_u64(i as u64)
419 }
420 /// Writes a single `i128` into this hasher.
421 #[inline]
422 #[stable(feature = "i128", since = "1.26.0")]
423 fn write_i128(&mut self, i: i128) {
424 self.write_u128(i as u128)
425 }
426 /// Writes a single `isize` into this hasher.
427 #[inline]
428 #[stable(feature = "hasher_write", since = "1.3.0")]
429 fn write_isize(&mut self, i: isize) {
430 self.write_usize(i as usize)
431 }
432
433 /// Writes a length prefix into this hasher, as part of being prefix-free.
434 ///
435 /// If you're implementing [`Hash`] for a custom collection, call this before
436 /// writing its contents to this `Hasher`. That way
437 /// `(collection![1, 2, 3], collection![4, 5])` and
438 /// `(collection![1, 2], collection![3, 4, 5])` will provide different
439 /// sequences of values to the `Hasher`
440 ///
441 /// The `impl<T> Hash for [T]` includes a call to this method, so if you're
442 /// hashing a slice (or array or vector) via its `Hash::hash` method,
443 /// you should **not** call this yourself.
444 ///
445 /// This method is only for providing domain separation. If you want to
446 /// hash a `usize` that represents part of the *data*, then it's important
447 /// that you pass it to [`Hasher::write_usize`] instead of to this method.
448 ///
449 /// # Examples
450 ///
451 /// ```
452 /// #![feature(hasher_prefixfree_extras)]
453 /// # // Stubs to make the `impl` below pass the compiler
454 /// # #![allow(non_local_definitions)]
455 /// # struct MyCollection<T>(Option<T>);
456 /// # impl<T> MyCollection<T> {
457 /// # fn len(&self) -> usize { todo!() }
458 /// # }
459 /// # impl<'a, T> IntoIterator for &'a MyCollection<T> {
460 /// # type Item = T;
461 /// # type IntoIter = std::iter::Empty<T>;
462 /// # fn into_iter(self) -> Self::IntoIter { todo!() }
463 /// # }
464 ///
465 /// use std::hash::{Hash, Hasher};
466 /// impl<T: Hash> Hash for MyCollection<T> {
467 /// fn hash<H: Hasher>(&self, state: &mut H) {
468 /// state.write_length_prefix(self.len());
469 /// for elt in self {
470 /// elt.hash(state);
471 /// }
472 /// }
473 /// }
474 /// ```
475 ///
476 /// # Note to Implementers
477 ///
478 /// If you've decided that your `Hasher` is willing to be susceptible to
479 /// Hash-DoS attacks, then you might consider skipping hashing some or all
480 /// of the `len` provided in the name of increased performance.
481 #[inline]
482 #[unstable(feature = "hasher_prefixfree_extras", issue = "96762")]
483 fn write_length_prefix(&mut self, len: usize) {
484 self.write_usize(len);
485 }
486
487 /// Writes a single `str` into this hasher.
488 ///
489 /// If you're implementing [`Hash`], you generally do not need to call this,
490 /// as the `impl Hash for str` does, so you should prefer that instead.
491 ///
492 /// This includes the domain separator for prefix-freedom, so you should
493 /// **not** call `Self::write_length_prefix` before calling this.
494 ///
495 /// # Note to Implementers
496 ///
497 /// There are at least two reasonable default ways to implement this.
498 /// Which one will be the default is not yet decided, so for now
499 /// you probably want to override it specifically.
500 ///
501 /// ## The general answer
502 ///
503 /// It's always correct to implement this with a length prefix:
504 ///
505 /// ```
506 /// # #![feature(hasher_prefixfree_extras)]
507 /// # struct Foo;
508 /// # impl std::hash::Hasher for Foo {
509 /// # fn finish(&self) -> u64 { unimplemented!() }
510 /// # fn write(&mut self, _bytes: &[u8]) { unimplemented!() }
511 /// fn write_str(&mut self, s: &str) {
512 /// self.write_length_prefix(s.len());
513 /// self.write(s.as_bytes());
514 /// }
515 /// # }
516 /// ```
517 ///
518 /// And, if your `Hasher` works in `usize` chunks, this is likely a very
519 /// efficient way to do it, as anything more complicated may well end up
520 /// slower than just running the round with the length.
521 ///
522 /// ## If your `Hasher` works byte-wise
523 ///
524 /// One nice thing about `str` being UTF-8 is that the `b'\xFF'` byte
525 /// never happens. That means that you can append that to the byte stream
526 /// being hashed and maintain prefix-freedom:
527 ///
528 /// ```
529 /// # #![feature(hasher_prefixfree_extras)]
530 /// # struct Foo;
531 /// # impl std::hash::Hasher for Foo {
532 /// # fn finish(&self) -> u64 { unimplemented!() }
533 /// # fn write(&mut self, _bytes: &[u8]) { unimplemented!() }
534 /// fn write_str(&mut self, s: &str) {
535 /// self.write(s.as_bytes());
536 /// self.write_u8(0xff);
537 /// }
538 /// # }
539 /// ```
540 ///
541 /// This does require that your implementation not add extra padding, and
542 /// thus generally requires that you maintain a buffer, running a round
543 /// only once that buffer is full (or `finish` is called).
544 ///
545 /// That's because if `write` pads data out to a fixed chunk size, it's
546 /// likely that it does it in such a way that `"a"` and `"a\x00"` would
547 /// end up hashing the same sequence of things, introducing conflicts.
548 #[inline]
549 #[unstable(feature = "hasher_prefixfree_extras", issue = "96762")]
550 fn write_str(&mut self, s: &str) {
551 self.write(s.as_bytes());
552 self.write_u8(0xff);
553 }
554}
555
556#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
557impl<H: Hasher + ?Sized> Hasher for &mut H {
558 fn finish(&self) -> u64 {
559 (**self).finish()
560 }
561 fn write(&mut self, bytes: &[u8]) {
562 (**self).write(bytes)
563 }
564 fn write_u8(&mut self, i: u8) {
565 (**self).write_u8(i)
566 }
567 fn write_u16(&mut self, i: u16) {
568 (**self).write_u16(i)
569 }
570 fn write_u32(&mut self, i: u32) {
571 (**self).write_u32(i)
572 }
573 fn write_u64(&mut self, i: u64) {
574 (**self).write_u64(i)
575 }
576 fn write_u128(&mut self, i: u128) {
577 (**self).write_u128(i)
578 }
579 fn write_usize(&mut self, i: usize) {
580 (**self).write_usize(i)
581 }
582 fn write_i8(&mut self, i: i8) {
583 (**self).write_i8(i)
584 }
585 fn write_i16(&mut self, i: i16) {
586 (**self).write_i16(i)
587 }
588 fn write_i32(&mut self, i: i32) {
589 (**self).write_i32(i)
590 }
591 fn write_i64(&mut self, i: i64) {
592 (**self).write_i64(i)
593 }
594 fn write_i128(&mut self, i: i128) {
595 (**self).write_i128(i)
596 }
597 fn write_isize(&mut self, i: isize) {
598 (**self).write_isize(i)
599 }
600 fn write_length_prefix(&mut self, len: usize) {
601 (**self).write_length_prefix(len)
602 }
603 fn write_str(&mut self, s: &str) {
604 (**self).write_str(s)
605 }
606}
607
608/// A trait for creating instances of [`Hasher`].
609///
610/// A `BuildHasher` is typically used (e.g., by [`HashMap`]) to create
611/// [`Hasher`]s for each key such that they are hashed independently of one
612/// another, since [`Hasher`]s contain state.
613///
614/// For each instance of `BuildHasher`, the [`Hasher`]s created by
615/// [`build_hasher`] should be identical. That is, if the same stream of bytes
616/// is fed into each hasher, the same output will also be generated.
617///
618/// # Examples
619///
620/// ```
621/// use std::hash::{BuildHasher, Hasher, RandomState};
622///
623/// let s = RandomState::new();
624/// let mut hasher_1 = s.build_hasher();
625/// let mut hasher_2 = s.build_hasher();
626///
627/// hasher_1.write_u32(8128);
628/// hasher_2.write_u32(8128);
629///
630/// assert_eq!(hasher_1.finish(), hasher_2.finish());
631/// ```
632///
633/// [`build_hasher`]: BuildHasher::build_hasher
634/// [`HashMap`]: ../../std/collections/struct.HashMap.html
635#[cfg_attr(not(test), rustc_diagnostic_item = "BuildHasher")]
636#[stable(since = "1.7.0", feature = "build_hasher")]
637pub trait BuildHasher {
638 /// Type of the hasher that will be created.
639 #[stable(since = "1.7.0", feature = "build_hasher")]
640 type Hasher: Hasher;
641
642 /// Creates a new hasher.
643 ///
644 /// Each call to `build_hasher` on the same instance should produce identical
645 /// [`Hasher`]s.
646 ///
647 /// # Examples
648 ///
649 /// ```
650 /// use std::hash::{BuildHasher, RandomState};
651 ///
652 /// let s = RandomState::new();
653 /// let new_s = s.build_hasher();
654 /// ```
655 #[stable(since = "1.7.0", feature = "build_hasher")]
656 fn build_hasher(&self) -> Self::Hasher;
657
658 /// Calculates the hash of a single value.
659 ///
660 /// This is intended as a convenience for code which *consumes* hashes, such
661 /// as the implementation of a hash table or in unit tests that check
662 /// whether a custom [`Hash`] implementation behaves as expected.
663 ///
664 /// This must not be used in any code which *creates* hashes, such as in an
665 /// implementation of [`Hash`]. The way to create a combined hash of
666 /// multiple values is to call [`Hash::hash`] multiple times using the same
667 /// [`Hasher`], not to call this method repeatedly and combine the results.
668 ///
669 /// # Example
670 ///
671 /// ```
672 /// use std::cmp::{max, min};
673 /// use std::hash::{BuildHasher, Hash, Hasher};
674 /// struct OrderAmbivalentPair<T: Ord>(T, T);
675 /// impl<T: Ord + Hash> Hash for OrderAmbivalentPair<T> {
676 /// fn hash<H: Hasher>(&self, hasher: &mut H) {
677 /// min(&self.0, &self.1).hash(hasher);
678 /// max(&self.0, &self.1).hash(hasher);
679 /// }
680 /// }
681 ///
682 /// // Then later, in a `#[test]` for the type...
683 /// let bh = std::hash::RandomState::new();
684 /// assert_eq!(
685 /// bh.hash_one(OrderAmbivalentPair(1, 2)),
686 /// bh.hash_one(OrderAmbivalentPair(2, 1))
687 /// );
688 /// assert_eq!(
689 /// bh.hash_one(OrderAmbivalentPair(10, 2)),
690 /// bh.hash_one(&OrderAmbivalentPair(2, 10))
691 /// );
692 /// ```
693 #[stable(feature = "build_hasher_simple_hash_one", since = "1.71.0")]
694 fn hash_one<T: Hash>(&self, x: T) -> u64
695 where
696 Self: Sized,
697 Self::Hasher: Hasher,
698 {
699 let mut hasher = self.build_hasher();
700 x.hash(&mut hasher);
701 hasher.finish()
702 }
703}
704
705/// Used to create a default [`BuildHasher`] instance for types that implement
706/// [`Hasher`] and [`Default`].
707///
708/// `BuildHasherDefault<H>` can be used when a type `H` implements [`Hasher`] and
709/// [`Default`], and you need a corresponding [`BuildHasher`] instance, but none is
710/// defined.
711///
712/// Any `BuildHasherDefault` is [zero-sized]. It can be created with
713/// [`default`][method.default]. When using `BuildHasherDefault` with [`HashMap`] or
714/// [`HashSet`], this doesn't need to be done, since they implement appropriate
715/// [`Default`] instances themselves.
716///
717/// # Examples
718///
719/// Using `BuildHasherDefault` to specify a custom [`BuildHasher`] for
720/// [`HashMap`]:
721///
722/// ```
723/// use std::collections::HashMap;
724/// use std::hash::{BuildHasherDefault, Hasher};
725///
726/// #[derive(Default)]
727/// struct MyHasher;
728///
729/// impl Hasher for MyHasher {
730/// fn write(&mut self, bytes: &[u8]) {
731/// // Your hashing algorithm goes here!
732/// unimplemented!()
733/// }
734///
735/// fn finish(&self) -> u64 {
736/// // Your hashing algorithm goes here!
737/// unimplemented!()
738/// }
739/// }
740///
741/// type MyBuildHasher = BuildHasherDefault<MyHasher>;
742///
743/// let hash_map = HashMap::<u32, u32, MyBuildHasher>::default();
744/// ```
745///
746/// [method.default]: BuildHasherDefault::default
747/// [`HashMap`]: ../../std/collections/struct.HashMap.html
748/// [`HashSet`]: ../../std/collections/struct.HashSet.html
749/// [zero-sized]: https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
750#[stable(since = "1.7.0", feature = "build_hasher")]
751pub struct BuildHasherDefault<H>(marker::PhantomData<fn() -> H>);
752
753impl<H> BuildHasherDefault<H> {
754 /// Creates a new BuildHasherDefault for Hasher `H`.
755 #[stable(feature = "build_hasher_default_const_new", since = "1.85.0")]
756 #[rustc_const_stable(feature = "build_hasher_default_const_new", since = "1.85.0")]
757 pub const fn new() -> Self {
758 BuildHasherDefault(marker::PhantomData)
759 }
760}
761
762#[stable(since = "1.9.0", feature = "core_impl_debug")]
763impl<H> fmt::Debug for BuildHasherDefault<H> {
764 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
765 f.debug_struct("BuildHasherDefault").finish()
766 }
767}
768
769#[stable(since = "1.7.0", feature = "build_hasher")]
770impl<H: Default + Hasher> BuildHasher for BuildHasherDefault<H> {
771 type Hasher = H;
772
773 fn build_hasher(&self) -> H {
774 H::default()
775 }
776}
777
778#[stable(since = "1.7.0", feature = "build_hasher")]
779impl<H> Clone for BuildHasherDefault<H> {
780 fn clone(&self) -> BuildHasherDefault<H> {
781 BuildHasherDefault(marker::PhantomData)
782 }
783}
784
785#[stable(since = "1.7.0", feature = "build_hasher")]
786#[rustc_const_unstable(feature = "const_default", issue = "143894")]
787impl<H> const Default for BuildHasherDefault<H> {
788 fn default() -> BuildHasherDefault<H> {
789 Self::new()
790 }
791}
792
793#[stable(since = "1.29.0", feature = "build_hasher_eq")]
794impl<H> PartialEq for BuildHasherDefault<H> {
795 fn eq(&self, _other: &BuildHasherDefault<H>) -> bool {
796 true
797 }
798}
799
800#[stable(since = "1.29.0", feature = "build_hasher_eq")]
801impl<H> Eq for BuildHasherDefault<H> {}
802
803mod impls {
804 use super::*;
805 use crate::slice;
806
807 macro_rules! impl_write {
808 ($(($ty:ident, $meth:ident),)*) => {$(
809 #[stable(feature = "rust1", since = "1.0.0")]
810 impl Hash for $ty {
811 #[inline]
812 fn hash<H: Hasher>(&self, state: &mut H) {
813 state.$meth(*self)
814 }
815
816 #[inline]
817 fn hash_slice<H: Hasher>(data: &[$ty], state: &mut H) {
818 let newlen = size_of_val(data);
819 let ptr = data.as_ptr() as *const u8;
820 // SAFETY: `ptr` is valid and aligned, as this macro is only used
821 // for numeric primitives which have no padding. The new slice only
822 // spans across `data` and is never mutated, and its total size is the
823 // same as the original `data` so it can't be over `isize::MAX`.
824 state.write(unsafe { slice::from_raw_parts(ptr, newlen) })
825 }
826 }
827 )*}
828 }
829
830 impl_write! {
831 (u8, write_u8),
832 (u16, write_u16),
833 (u32, write_u32),
834 (u64, write_u64),
835 (usize, write_usize),
836 (i8, write_i8),
837 (i16, write_i16),
838 (i32, write_i32),
839 (i64, write_i64),
840 (isize, write_isize),
841 (u128, write_u128),
842 (i128, write_i128),
843 }
844
845 #[stable(feature = "rust1", since = "1.0.0")]
846 impl Hash for bool {
847 #[inline]
848 fn hash<H: Hasher>(&self, state: &mut H) {
849 state.write_u8(*self as u8)
850 }
851 }
852
853 #[stable(feature = "rust1", since = "1.0.0")]
854 impl Hash for char {
855 #[inline]
856 fn hash<H: Hasher>(&self, state: &mut H) {
857 state.write_u32(*self as u32)
858 }
859 }
860
861 #[stable(feature = "rust1", since = "1.0.0")]
862 impl Hash for str {
863 #[inline]
864 fn hash<H: Hasher>(&self, state: &mut H) {
865 state.write_str(self);
866 }
867 }
868
869 #[stable(feature = "never_hash", since = "1.29.0")]
870 impl Hash for ! {
871 #[inline]
872 fn hash<H: Hasher>(&self, _: &mut H) {
873 *self
874 }
875 }
876
877 macro_rules! impl_hash_tuple {
878 () => (
879 #[stable(feature = "rust1", since = "1.0.0")]
880 impl Hash for () {
881 #[inline]
882 fn hash<H: Hasher>(&self, _state: &mut H) {}
883 }
884 );
885
886 ( $($name:ident)+) => (
887 maybe_tuple_doc! {
888 $($name)+ @
889 #[stable(feature = "rust1", since = "1.0.0")]
890 impl<$($name: Hash),+> Hash for ($($name,)+) {
891 #[allow(non_snake_case)]
892 #[inline]
893 fn hash<S: Hasher>(&self, state: &mut S) {
894 let ($(ref $name,)+) = *self;
895 $($name.hash(state);)+
896 }
897 }
898 }
899 );
900 }
901
902 macro_rules! maybe_tuple_doc {
903 ($a:ident @ #[$meta:meta] $item:item) => {
904 #[doc(fake_variadic)]
905 #[doc = "This trait is implemented for tuples up to twelve items long."]
906 #[$meta]
907 $item
908 };
909 ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
910 #[doc(hidden)]
911 #[$meta]
912 $item
913 };
914 }
915
916 impl_hash_tuple! {}
917 impl_hash_tuple! { T }
918 impl_hash_tuple! { T B }
919 impl_hash_tuple! { T B C }
920 impl_hash_tuple! { T B C D }
921 impl_hash_tuple! { T B C D E }
922 impl_hash_tuple! { T B C D E F }
923 impl_hash_tuple! { T B C D E F G }
924 impl_hash_tuple! { T B C D E F G H }
925 impl_hash_tuple! { T B C D E F G H I }
926 impl_hash_tuple! { T B C D E F G H I J }
927 impl_hash_tuple! { T B C D E F G H I J K }
928 impl_hash_tuple! { T B C D E F G H I J K L }
929
930 #[stable(feature = "rust1", since = "1.0.0")]
931 impl<T: Hash> Hash for [T] {
932 #[inline]
933 fn hash<H: Hasher>(&self, state: &mut H) {
934 state.write_length_prefix(self.len());
935 Hash::hash_slice(self, state)
936 }
937 }
938
939 #[stable(feature = "rust1", since = "1.0.0")]
940 impl<T: ?Sized + marker::PointeeSized + Hash> Hash for &T {
941 #[inline]
942 fn hash<H: Hasher>(&self, state: &mut H) {
943 (**self).hash(state);
944 }
945 }
946
947 #[stable(feature = "rust1", since = "1.0.0")]
948 impl<T: ?Sized + marker::PointeeSized + Hash> Hash for &mut T {
949 #[inline]
950 fn hash<H: Hasher>(&self, state: &mut H) {
951 (**self).hash(state);
952 }
953 }
954
955 #[stable(feature = "rust1", since = "1.0.0")]
956 impl<T: ?Sized + marker::PointeeSized> Hash for *const T {
957 #[inline]
958 fn hash<H: Hasher>(&self, state: &mut H) {
959 let (address, metadata) = self.to_raw_parts();
960 state.write_usize(address.addr());
961 metadata.hash(state);
962 }
963 }
964
965 #[stable(feature = "rust1", since = "1.0.0")]
966 impl<T: ?Sized + marker::PointeeSized> Hash for *mut T {
967 #[inline]
968 fn hash<H: Hasher>(&self, state: &mut H) {
969 let (address, metadata) = self.to_raw_parts();
970 state.write_usize(address.addr());
971 metadata.hash(state);
972 }
973 }
974}