kernel/list.rs
1// SPDX-License-Identifier: GPL-2.0
2
3// Copyright (C) 2024 Google LLC.
4
5//! A linked list implementation.
6
7use crate::sync::ArcBorrow;
8use crate::types::Opaque;
9use core::iter::{DoubleEndedIterator, FusedIterator};
10use core::marker::PhantomData;
11use core::ptr;
12use pin_init::PinInit;
13
14mod impl_list_item_mod;
15pub use self::impl_list_item_mod::{
16 impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
17};
18
19mod arc;
20pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
21
22mod arc_field;
23pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
24
25/// A linked list.
26///
27/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
28/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
29/// prev/next pointers are not used for several linked lists.
30///
31/// # Invariants
32///
33/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
34/// field of the first element in the list.
35/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
36/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
37/// exclusive access to the `ListLinks` field.
38pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
39 first: *mut ListLinksFields,
40 _ty: PhantomData<ListArc<T, ID>>,
41}
42
43// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
44// type of access to the `ListArc<T, ID>` elements.
45unsafe impl<T, const ID: u64> Send for List<T, ID>
46where
47 ListArc<T, ID>: Send,
48 T: ?Sized + ListItem<ID>,
49{
50}
51// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
52// type of access to the `ListArc<T, ID>` elements.
53unsafe impl<T, const ID: u64> Sync for List<T, ID>
54where
55 ListArc<T, ID>: Sync,
56 T: ?Sized + ListItem<ID>,
57{
58}
59
60/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
61///
62/// # Safety
63///
64/// Implementers must ensure that they provide the guarantees documented on methods provided by
65/// this trait.
66///
67/// [`ListArc<Self>`]: ListArc
68pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
69 /// Views the [`ListLinks`] for this value.
70 ///
71 /// # Guarantees
72 ///
73 /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
74 /// since the most recent such call, then this returns the same pointer as the one returned by
75 /// the most recent call to `prepare_to_insert`.
76 ///
77 /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
78 ///
79 /// # Safety
80 ///
81 /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
82 unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
83
84 /// View the full value given its [`ListLinks`] field.
85 ///
86 /// Can only be used when the value is in a list.
87 ///
88 /// # Guarantees
89 ///
90 /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
91 /// * The returned pointer is valid until the next call to `post_remove`.
92 ///
93 /// # Safety
94 ///
95 /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
96 /// from a call to `view_links` that happened after the most recent call to
97 /// `prepare_to_insert`.
98 /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
99 /// been called.
100 unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
101
102 /// This is called when an item is inserted into a [`List`].
103 ///
104 /// # Guarantees
105 ///
106 /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
107 /// called.
108 ///
109 /// # Safety
110 ///
111 /// * The provided pointer must point at a valid value in an [`Arc`].
112 /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
113 /// * The caller must own the [`ListArc`] for this value.
114 /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
115 /// called after this call to `prepare_to_insert`.
116 ///
117 /// [`Arc`]: crate::sync::Arc
118 unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
119
120 /// This undoes a previous call to `prepare_to_insert`.
121 ///
122 /// # Guarantees
123 ///
124 /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
125 ///
126 /// # Safety
127 ///
128 /// The provided pointer must be the pointer returned by the most recent call to
129 /// `prepare_to_insert`.
130 unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
131}
132
133#[repr(C)]
134#[derive(Copy, Clone)]
135struct ListLinksFields {
136 next: *mut ListLinksFields,
137 prev: *mut ListLinksFields,
138}
139
140/// The prev/next pointers for an item in a linked list.
141///
142/// # Invariants
143///
144/// The fields are null if and only if this item is not in a list.
145#[repr(transparent)]
146pub struct ListLinks<const ID: u64 = 0> {
147 // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
148 // list.
149 inner: Opaque<ListLinksFields>,
150}
151
152// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
153// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
154// move this an instance of this type to a different thread if the pointees are `!Send`.
155unsafe impl<const ID: u64> Send for ListLinks<ID> {}
156// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
157// okay to have immutable access to a ListLinks from several threads at once.
158unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
159
160impl<const ID: u64> ListLinks<ID> {
161 /// Creates a new initializer for this type.
162 pub fn new() -> impl PinInit<Self> {
163 // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
164 // not be constructed in an `Arc` that already has a `ListArc`.
165 ListLinks {
166 inner: Opaque::new(ListLinksFields {
167 prev: ptr::null_mut(),
168 next: ptr::null_mut(),
169 }),
170 }
171 }
172
173 /// # Safety
174 ///
175 /// `me` must be dereferenceable.
176 #[inline]
177 unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
178 // SAFETY: The caller promises that the pointer is valid.
179 unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
180 }
181
182 /// # Safety
183 ///
184 /// `me` must be dereferenceable.
185 #[inline]
186 unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
187 me.cast()
188 }
189}
190
191/// Similar to [`ListLinks`], but also contains a pointer to the full value.
192///
193/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
194#[repr(C)]
195pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
196 /// The `ListLinks` field inside this value.
197 ///
198 /// This is public so that it can be used with `impl_has_list_links!`.
199 pub inner: ListLinks<ID>,
200 // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
201 // `ptr::null()` doesn't work for `T: ?Sized`.
202 self_ptr: Opaque<*const T>,
203}
204
205// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
206unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
207// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
208// it's okay to have immutable access to a ListLinks from several threads at once.
209//
210// Note that `inner` being a public field does not prevent this type from being opaque, since
211// `inner` is a opaque type.
212unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
213
214impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
215 /// The offset from the [`ListLinks`] to the self pointer field.
216 pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
217
218 /// Creates a new initializer for this type.
219 pub fn new() -> impl PinInit<Self> {
220 // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
221 // not be constructed in an `Arc` that already has a `ListArc`.
222 Self {
223 inner: ListLinks {
224 inner: Opaque::new(ListLinksFields {
225 prev: ptr::null_mut(),
226 next: ptr::null_mut(),
227 }),
228 },
229 self_ptr: Opaque::uninit(),
230 }
231 }
232}
233
234impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
235 /// Creates a new empty list.
236 pub const fn new() -> Self {
237 Self {
238 first: ptr::null_mut(),
239 _ty: PhantomData,
240 }
241 }
242
243 /// Returns whether this list is empty.
244 pub fn is_empty(&self) -> bool {
245 self.first.is_null()
246 }
247
248 /// Inserts `item` before `next` in the cycle.
249 ///
250 /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
251 /// is empty.
252 ///
253 /// # Safety
254 ///
255 /// * `next` must be an element in this list or null.
256 /// * if `next` is null, then the list must be empty.
257 unsafe fn insert_inner(
258 &mut self,
259 item: ListArc<T, ID>,
260 next: *mut ListLinksFields,
261 ) -> *mut ListLinksFields {
262 let raw_item = ListArc::into_raw(item);
263 // SAFETY:
264 // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
265 // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
266 // the most recent call to `prepare_to_insert`, if any.
267 // * We own the `ListArc`.
268 // * Removing items from this list is always done using `remove_internal_inner`, which
269 // calls `post_remove` before giving up ownership.
270 let list_links = unsafe { T::prepare_to_insert(raw_item) };
271 // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
272 let item = unsafe { ListLinks::fields(list_links) };
273
274 // Check if the list is empty.
275 if next.is_null() {
276 // SAFETY: The caller just gave us ownership of these fields.
277 // INVARIANT: A linked list with one item should be cyclic.
278 unsafe {
279 (*item).next = item;
280 (*item).prev = item;
281 }
282 self.first = item;
283 } else {
284 // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
285 // it's not null, so it must be valid.
286 let prev = unsafe { (*next).prev };
287 // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
288 // ownership of the fields on `item`.
289 // INVARIANT: This correctly inserts `item` between `prev` and `next`.
290 unsafe {
291 (*item).next = next;
292 (*item).prev = prev;
293 (*prev).next = item;
294 (*next).prev = item;
295 }
296 }
297
298 item
299 }
300
301 /// Add the provided item to the back of the list.
302 pub fn push_back(&mut self, item: ListArc<T, ID>) {
303 // SAFETY:
304 // * `self.first` is null or in the list.
305 // * `self.first` is only null if the list is empty.
306 unsafe { self.insert_inner(item, self.first) };
307 }
308
309 /// Add the provided item to the front of the list.
310 pub fn push_front(&mut self, item: ListArc<T, ID>) {
311 // SAFETY:
312 // * `self.first` is null or in the list.
313 // * `self.first` is only null if the list is empty.
314 let new_elem = unsafe { self.insert_inner(item, self.first) };
315
316 // INVARIANT: `new_elem` is in the list because we just inserted it.
317 self.first = new_elem;
318 }
319
320 /// Removes the last item from this list.
321 pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
322 if self.first.is_null() {
323 return None;
324 }
325
326 // SAFETY: We just checked that the list is not empty.
327 let last = unsafe { (*self.first).prev };
328 // SAFETY: The last item of this list is in this list.
329 Some(unsafe { self.remove_internal(last) })
330 }
331
332 /// Removes the first item from this list.
333 pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
334 if self.first.is_null() {
335 return None;
336 }
337
338 // SAFETY: The first item of this list is in this list.
339 Some(unsafe { self.remove_internal(self.first) })
340 }
341
342 /// Removes the provided item from this list and returns it.
343 ///
344 /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
345 /// this means that the item is not in any list.)
346 ///
347 /// # Safety
348 ///
349 /// `item` must not be in a different linked list (with the same id).
350 pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
351 // SAFETY: TODO.
352 let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
353 // SAFETY: The user provided a reference, and reference are never dangling.
354 //
355 // As for why this is not a data race, there are two cases:
356 //
357 // * If `item` is not in any list, then these fields are read-only and null.
358 // * If `item` is in this list, then we have exclusive access to these fields since we
359 // have a mutable reference to the list.
360 //
361 // In either case, there's no race.
362 let ListLinksFields { next, prev } = unsafe { *item };
363
364 debug_assert_eq!(next.is_null(), prev.is_null());
365 if !next.is_null() {
366 // This is really a no-op, but this ensures that `item` is a raw pointer that was
367 // obtained without going through a pointer->reference->pointer conversion roundtrip.
368 // This ensures that the list is valid under the more restrictive strict provenance
369 // ruleset.
370 //
371 // SAFETY: We just checked that `next` is not null, and it's not dangling by the
372 // list invariants.
373 unsafe {
374 debug_assert_eq!(item, (*next).prev);
375 item = (*next).prev;
376 }
377
378 // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
379 // is in this list. The pointers are in the right order.
380 Some(unsafe { self.remove_internal_inner(item, next, prev) })
381 } else {
382 None
383 }
384 }
385
386 /// Removes the provided item from the list.
387 ///
388 /// # Safety
389 ///
390 /// `item` must point at an item in this list.
391 unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
392 // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
393 // since we have a mutable reference to the list containing `item`.
394 let ListLinksFields { next, prev } = unsafe { *item };
395 // SAFETY: The pointers are ok and in the right order.
396 unsafe { self.remove_internal_inner(item, next, prev) }
397 }
398
399 /// Removes the provided item from the list.
400 ///
401 /// # Safety
402 ///
403 /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
404 /// next` and `(*item).prev == prev`.
405 unsafe fn remove_internal_inner(
406 &mut self,
407 item: *mut ListLinksFields,
408 next: *mut ListLinksFields,
409 prev: *mut ListLinksFields,
410 ) -> ListArc<T, ID> {
411 // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
412 // pointers are always valid for items in a list.
413 //
414 // INVARIANT: There are three cases:
415 // * If the list has at least three items, then after removing the item, `prev` and `next`
416 // will be next to each other.
417 // * If the list has two items, then the remaining item will point at itself.
418 // * If the list has one item, then `next == prev == item`, so these writes have no
419 // effect. The list remains unchanged and `item` is still in the list for now.
420 unsafe {
421 (*next).prev = prev;
422 (*prev).next = next;
423 }
424 // SAFETY: We have exclusive access to items in the list.
425 // INVARIANT: `item` is being removed, so the pointers should be null.
426 unsafe {
427 (*item).prev = ptr::null_mut();
428 (*item).next = ptr::null_mut();
429 }
430 // INVARIANT: There are three cases:
431 // * If `item` was not the first item, then `self.first` should remain unchanged.
432 // * If `item` was the first item and there is another item, then we just updated
433 // `prev->next` to `next`, which is the new first item, and setting `item->next` to null
434 // did not modify `prev->next`.
435 // * If `item` was the only item in the list, then `prev == item`, and we just set
436 // `item->next` to null, so this correctly sets `first` to null now that the list is
437 // empty.
438 if self.first == item {
439 // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
440 // list, so it must be valid. There is no race since `prev` is still in the list and we
441 // still have exclusive access to the list.
442 self.first = unsafe { (*prev).next };
443 }
444
445 // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
446 // of `List`.
447 let list_links = unsafe { ListLinks::from_fields(item) };
448 // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
449 let raw_item = unsafe { T::post_remove(list_links) };
450 // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
451 unsafe { ListArc::from_raw(raw_item) }
452 }
453
454 /// Moves all items from `other` into `self`.
455 ///
456 /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
457 /// the last item of `self`.
458 pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
459 // First, we insert the elements into `self`. At the end, we make `other` empty.
460 if self.is_empty() {
461 // INVARIANT: All of the elements in `other` become elements of `self`.
462 self.first = other.first;
463 } else if !other.is_empty() {
464 let other_first = other.first;
465 // SAFETY: The other list is not empty, so this pointer is valid.
466 let other_last = unsafe { (*other_first).prev };
467 let self_first = self.first;
468 // SAFETY: The self list is not empty, so this pointer is valid.
469 let self_last = unsafe { (*self_first).prev };
470
471 // SAFETY: We have exclusive access to both lists, so we can update the pointers.
472 // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
473 // update `self.first` because the first element of `self` does not change.
474 unsafe {
475 (*self_first).prev = other_last;
476 (*other_last).next = self_first;
477 (*self_last).next = other_first;
478 (*other_first).prev = self_last;
479 }
480 }
481
482 // INVARIANT: The other list is now empty, so update its pointer.
483 other.first = ptr::null_mut();
484 }
485
486 /// Returns a cursor that points before the first element of the list.
487 pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
488 // INVARIANT: `self.first` is in this list.
489 Cursor {
490 next: self.first,
491 list: self,
492 }
493 }
494
495 /// Returns a cursor that points after the last element in the list.
496 pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
497 // INVARIANT: `next` is allowed to be null.
498 Cursor {
499 next: core::ptr::null_mut(),
500 list: self,
501 }
502 }
503
504 /// Creates an iterator over the list.
505 pub fn iter(&self) -> Iter<'_, T, ID> {
506 // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
507 // at the first element of the same list.
508 Iter {
509 current: self.first,
510 stop: self.first,
511 _ty: PhantomData,
512 }
513 }
514}
515
516impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
517 fn default() -> Self {
518 List::new()
519 }
520}
521
522impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
523 fn drop(&mut self) {
524 while let Some(item) = self.pop_front() {
525 drop(item);
526 }
527 }
528}
529
530/// An iterator over a [`List`].
531///
532/// # Invariants
533///
534/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
535/// * The `current` pointer is null or points at a value in that [`List`].
536/// * The `stop` pointer is equal to the `first` field of that [`List`].
537#[derive(Clone)]
538pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
539 current: *mut ListLinksFields,
540 stop: *mut ListLinksFields,
541 _ty: PhantomData<&'a ListArc<T, ID>>,
542}
543
544impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
545 type Item = ArcBorrow<'a, T>;
546
547 fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
548 if self.current.is_null() {
549 return None;
550 }
551
552 let current = self.current;
553
554 // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
555 // dangling. There's no race because the iterator holds an immutable borrow to the list.
556 let next = unsafe { (*current).next };
557 // INVARIANT: If `current` was the last element of the list, then this updates it to null.
558 // Otherwise, we update it to the next element.
559 self.current = if next != self.stop {
560 next
561 } else {
562 ptr::null_mut()
563 };
564
565 // SAFETY: The `current` pointer points at a value in the list.
566 let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
567 // SAFETY:
568 // * All values in a list are stored in an `Arc`.
569 // * The value cannot be removed from the list for the duration of the lifetime annotated
570 // on the returned `ArcBorrow`, because removing it from the list would require mutable
571 // access to the list. However, the `ArcBorrow` is annotated with the iterator's
572 // lifetime, and the list is immutably borrowed for that lifetime.
573 // * Values in a list never have a `UniqueArc` reference.
574 Some(unsafe { ArcBorrow::from_raw(item) })
575 }
576}
577
578/// A cursor into a [`List`].
579///
580/// A cursor always rests between two elements in the list. This means that a cursor has a previous
581/// and next element, but no current element. It also means that it's possible to have a cursor
582/// into an empty list.
583///
584/// # Examples
585///
586/// ```
587/// use kernel::prelude::*;
588/// use kernel::list::{List, ListArc, ListLinks};
589///
590/// #[pin_data]
591/// struct ListItem {
592/// value: u32,
593/// #[pin]
594/// links: ListLinks,
595/// }
596///
597/// impl ListItem {
598/// fn new(value: u32) -> Result<ListArc<Self>> {
599/// ListArc::pin_init(try_pin_init!(Self {
600/// value,
601/// links <- ListLinks::new(),
602/// }), GFP_KERNEL)
603/// }
604/// }
605///
606/// kernel::list::impl_has_list_links! {
607/// impl HasListLinks<0> for ListItem { self.links }
608/// }
609/// kernel::list::impl_list_arc_safe! {
610/// impl ListArcSafe<0> for ListItem { untracked; }
611/// }
612/// kernel::list::impl_list_item! {
613/// impl ListItem<0> for ListItem { using ListLinks; }
614/// }
615///
616/// // Use a cursor to remove the first element with the given value.
617/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
618/// let mut cursor = list.cursor_front();
619/// while let Some(next) = cursor.peek_next() {
620/// if next.value == value {
621/// return Some(next.remove());
622/// }
623/// cursor.move_next();
624/// }
625/// None
626/// }
627///
628/// // Use a cursor to remove the last element with the given value.
629/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
630/// let mut cursor = list.cursor_back();
631/// while let Some(prev) = cursor.peek_prev() {
632/// if prev.value == value {
633/// return Some(prev.remove());
634/// }
635/// cursor.move_prev();
636/// }
637/// None
638/// }
639///
640/// // Use a cursor to remove all elements with the given value. The removed elements are moved to
641/// // a new list.
642/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
643/// let mut out = List::new();
644/// let mut cursor = list.cursor_front();
645/// while let Some(next) = cursor.peek_next() {
646/// if next.value == value {
647/// out.push_back(next.remove());
648/// } else {
649/// cursor.move_next();
650/// }
651/// }
652/// out
653/// }
654///
655/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
656/// // bounds.
657/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
658/// let mut cursor = list.cursor_front();
659/// for _ in 0..idx {
660/// if !cursor.move_next() {
661/// return Err(EINVAL);
662/// }
663/// }
664/// cursor.insert_next(new);
665/// Ok(())
666/// }
667///
668/// // Merge two sorted lists into a single sorted list.
669/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
670/// let mut cursor = list.cursor_front();
671/// for to_insert in merge {
672/// while let Some(next) = cursor.peek_next() {
673/// if to_insert.value < next.value {
674/// break;
675/// }
676/// cursor.move_next();
677/// }
678/// cursor.insert_prev(to_insert);
679/// }
680/// }
681///
682/// let mut list = List::new();
683/// list.push_back(ListItem::new(14)?);
684/// list.push_back(ListItem::new(12)?);
685/// list.push_back(ListItem::new(10)?);
686/// list.push_back(ListItem::new(12)?);
687/// list.push_back(ListItem::new(15)?);
688/// list.push_back(ListItem::new(14)?);
689/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
690/// // [14, 10, 15, 14]
691/// assert!(remove_first(&mut list, 14).is_some());
692/// // [10, 15, 14]
693/// insert_at(&mut list, ListItem::new(12)?, 2)?;
694/// // [10, 15, 12, 14]
695/// assert!(remove_last(&mut list, 15).is_some());
696/// // [10, 12, 14]
697///
698/// let mut list2 = List::new();
699/// list2.push_back(ListItem::new(11)?);
700/// list2.push_back(ListItem::new(13)?);
701/// merge_sorted(&mut list, list2);
702///
703/// let mut items = list.into_iter();
704/// assert_eq!(items.next().unwrap().value, 10);
705/// assert_eq!(items.next().unwrap().value, 11);
706/// assert_eq!(items.next().unwrap().value, 12);
707/// assert_eq!(items.next().unwrap().value, 13);
708/// assert_eq!(items.next().unwrap().value, 14);
709/// assert!(items.next().is_none());
710/// # Result::<(), Error>::Ok(())
711/// ```
712///
713/// # Invariants
714///
715/// The `next` pointer is null or points a value in `list`.
716pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
717 list: &'a mut List<T, ID>,
718 /// Points at the element after this cursor, or null if the cursor is after the last element.
719 next: *mut ListLinksFields,
720}
721
722impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
723 /// Returns a pointer to the element before the cursor.
724 ///
725 /// Returns null if there is no element before the cursor.
726 fn prev_ptr(&self) -> *mut ListLinksFields {
727 let mut next = self.next;
728 let first = self.list.first;
729 if next == first {
730 // We are before the first element.
731 return core::ptr::null_mut();
732 }
733
734 if next.is_null() {
735 // We are after the last element, so we need a pointer to the last element, which is
736 // the same as `(*first).prev`.
737 next = first;
738 }
739
740 // SAFETY: `next` can't be null, because then `first` must also be null, but in that case
741 // we would have exited at the `next == first` check. Thus, `next` is an element in the
742 // list, so we can access its `prev` pointer.
743 unsafe { (*next).prev }
744 }
745
746 /// Access the element after this cursor.
747 pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
748 if self.next.is_null() {
749 return None;
750 }
751
752 // INVARIANT:
753 // * We just checked that `self.next` is non-null, so it must be in `self.list`.
754 // * `ptr` is equal to `self.next`.
755 Some(CursorPeek {
756 ptr: self.next,
757 cursor: self,
758 })
759 }
760
761 /// Access the element before this cursor.
762 pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
763 let prev = self.prev_ptr();
764
765 if prev.is_null() {
766 return None;
767 }
768
769 // INVARIANT:
770 // * We just checked that `prev` is non-null, so it must be in `self.list`.
771 // * `self.prev_ptr()` never returns `self.next`.
772 Some(CursorPeek {
773 ptr: prev,
774 cursor: self,
775 })
776 }
777
778 /// Move the cursor one element forward.
779 ///
780 /// If the cursor is after the last element, then this call does nothing. This call returns
781 /// `true` if the cursor's position was changed.
782 pub fn move_next(&mut self) -> bool {
783 if self.next.is_null() {
784 return false;
785 }
786
787 // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
788 // access the `next` field.
789 let mut next = unsafe { (*self.next).next };
790
791 if next == self.list.first {
792 next = core::ptr::null_mut();
793 }
794
795 // INVARIANT: `next` is either null or the next element after an element in the list.
796 self.next = next;
797 true
798 }
799
800 /// Move the cursor one element backwards.
801 ///
802 /// If the cursor is before the first element, then this call does nothing. This call returns
803 /// `true` if the cursor's position was changed.
804 pub fn move_prev(&mut self) -> bool {
805 if self.next == self.list.first {
806 return false;
807 }
808
809 // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
810 self.next = self.prev_ptr();
811 true
812 }
813
814 /// Inserts an element where the cursor is pointing and get a pointer to the new element.
815 fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
816 let ptr = if self.next.is_null() {
817 self.list.first
818 } else {
819 self.next
820 };
821 // SAFETY:
822 // * `ptr` is an element in the list or null.
823 // * if `ptr` is null, then `self.list.first` is null so the list is empty.
824 let item = unsafe { self.list.insert_inner(item, ptr) };
825 if self.next == self.list.first {
826 // INVARIANT: We just inserted `item`, so it's a member of list.
827 self.list.first = item;
828 }
829 item
830 }
831
832 /// Insert an element at this cursor's location.
833 pub fn insert(mut self, item: ListArc<T, ID>) {
834 // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
835 // reduces confusion when the last operation on the cursor is an insertion; in that case,
836 // you just want to insert the element at the cursor, and it is confusing that the call
837 // involves the word prev or next.
838 self.insert_inner(item);
839 }
840
841 /// Inserts an element after this cursor.
842 ///
843 /// After insertion, the new element will be after the cursor.
844 pub fn insert_next(&mut self, item: ListArc<T, ID>) {
845 self.next = self.insert_inner(item);
846 }
847
848 /// Inserts an element before this cursor.
849 ///
850 /// After insertion, the new element will be before the cursor.
851 pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
852 self.insert_inner(item);
853 }
854
855 /// Remove the next element from the list.
856 pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
857 self.peek_next().map(|v| v.remove())
858 }
859
860 /// Remove the previous element from the list.
861 pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
862 self.peek_prev().map(|v| v.remove())
863 }
864}
865
866/// References the element in the list next to the cursor.
867///
868/// # Invariants
869///
870/// * `ptr` is an element in `self.cursor.list`.
871/// * `ISNEXT == (self.ptr == self.cursor.next)`.
872pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
873 cursor: &'a mut Cursor<'b, T, ID>,
874 ptr: *mut ListLinksFields,
875}
876
877impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
878 CursorPeek<'a, 'b, T, ISNEXT, ID>
879{
880 /// Remove the element from the list.
881 pub fn remove(self) -> ListArc<T, ID> {
882 if ISNEXT {
883 self.cursor.move_next();
884 }
885
886 // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
887 // call.
888 // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
889 // `self.cursor.list` by the type invariants of `Cursor`.
890 unsafe { self.cursor.list.remove_internal(self.ptr) }
891 }
892
893 /// Access this value as an [`ArcBorrow`].
894 pub fn arc(&self) -> ArcBorrow<'_, T> {
895 // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
896 let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
897 // SAFETY:
898 // * All values in a list are stored in an `Arc`.
899 // * The value cannot be removed from the list for the duration of the lifetime annotated
900 // on the returned `ArcBorrow`, because removing it from the list would require mutable
901 // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
902 // an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
903 // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
904 // access requires first releasing the immutable borrow on the `CursorPeek`.
905 // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
906 // reference, and `UniqueArc` references must be unique.
907 unsafe { ArcBorrow::from_raw(me) }
908 }
909}
910
911impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
912 for CursorPeek<'a, 'b, T, ISNEXT, ID>
913{
914 // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
915 // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
916 // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
917 // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
918 // unsound.
919 type Target = T;
920
921 fn deref(&self) -> &T {
922 // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
923 let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
924
925 // SAFETY: The value cannot be removed from the list for the duration of the lifetime
926 // annotated on the returned `&T`, because removing it from the list would require mutable
927 // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
928 // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
929 // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
930 // requires first releasing the immutable borrow on the `CursorPeek`.
931 unsafe { &*me }
932 }
933}
934
935impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
936
937impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
938 type IntoIter = Iter<'a, T, ID>;
939 type Item = ArcBorrow<'a, T>;
940
941 fn into_iter(self) -> Iter<'a, T, ID> {
942 self.iter()
943 }
944}
945
946/// An owning iterator into a [`List`].
947pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
948 list: List<T, ID>,
949}
950
951impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
952 type Item = ListArc<T, ID>;
953
954 fn next(&mut self) -> Option<ListArc<T, ID>> {
955 self.list.pop_front()
956 }
957}
958
959impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
960
961impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
962 fn next_back(&mut self) -> Option<ListArc<T, ID>> {
963 self.list.pop_back()
964 }
965}
966
967impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
968 type IntoIter = IntoIter<T, ID>;
969 type Item = ListArc<T, ID>;
970
971 fn into_iter(self) -> IntoIter<T, ID> {
972 IntoIter { list: self }
973 }
974}