1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
// SPDX-License-Identifier: GPL-2.0
//! Allocator support.
//!
//! Documentation for the kernel's memory allocators can found in the "Memory Allocation Guide"
//! linked below. For instance, this includes the concept of "get free page" (GFP) flags and the
//! typical application of the different kernel allocators.
//!
//! Reference: <https://docs.kernel.org/core-api/memory-allocation.html>
use super::Flags;
use core::alloc::Layout;
use core::ptr;
use core::ptr::NonNull;
use crate::alloc::{AllocError, Allocator, NumaNode};
use crate::bindings;
use crate::page;
const ARCH_KMALLOC_MINALIGN: usize = bindings::ARCH_KMALLOC_MINALIGN;
mod iter;
pub use self::iter::VmallocPageIter;
/// The contiguous kernel allocator.
///
/// `Kmalloc` is typically used for physically contiguous allocations up to page size, but also
/// supports larger allocations up to `bindings::KMALLOC_MAX_SIZE`, which is hardware specific.
///
/// For more details see [self].
pub struct Kmalloc;
/// The virtually contiguous kernel allocator.
///
/// `Vmalloc` allocates pages from the page level allocator and maps them into the contiguous kernel
/// virtual space. It is typically used for large allocations. The memory allocated with this
/// allocator is not physically contiguous.
///
/// For more details see [self].
pub struct Vmalloc;
/// The kvmalloc kernel allocator.
///
/// `KVmalloc` attempts to allocate memory with `Kmalloc` first, but falls back to `Vmalloc` upon
/// failure. This allocator is typically used when the size for the requested allocation is not
/// known and may exceed the capabilities of `Kmalloc`.
///
/// For more details see [self].
pub struct KVmalloc;
/// # Invariants
///
/// One of the following: `krealloc_node_align`, `vrealloc_node_align`, `kvrealloc_node_align`.
struct ReallocFunc(
unsafe extern "C" fn(
*const crate::ffi::c_void,
usize,
crate::ffi::c_ulong,
u32,
crate::ffi::c_int,
) -> *mut crate::ffi::c_void,
);
impl ReallocFunc {
// INVARIANT: `krealloc_node_align` satisfies the type invariants.
const KREALLOC: Self = Self(bindings::krealloc_node_align);
// INVARIANT: `vrealloc_node_align` satisfies the type invariants.
const VREALLOC: Self = Self(bindings::vrealloc_node_align);
// INVARIANT: `kvrealloc_node_align` satisfies the type invariants.
const KVREALLOC: Self = Self(bindings::kvrealloc_node_align);
/// # Safety
///
/// This method has the same safety requirements as [`Allocator::realloc`].
///
/// # Guarantees
///
/// This method has the same guarantees as `Allocator::realloc`. Additionally
/// - it accepts any pointer to a valid memory allocation allocated by this function.
/// - memory allocated by this function remains valid until it is passed to this function.
#[inline]
unsafe fn call(
&self,
ptr: Option<NonNull<u8>>,
layout: Layout,
old_layout: Layout,
flags: Flags,
nid: NumaNode,
) -> Result<NonNull<[u8]>, AllocError> {
let size = layout.size();
let ptr = match ptr {
Some(ptr) => {
if old_layout.size() == 0 {
ptr::null()
} else {
ptr.as_ptr()
}
}
None => ptr::null(),
};
// SAFETY:
// - `self.0` is one of `krealloc`, `vrealloc`, `kvrealloc` and thus only requires that
// `ptr` is NULL or valid.
// - `ptr` is either NULL or valid by the safety requirements of this function.
//
// GUARANTEE:
// - `self.0` is one of `krealloc`, `vrealloc`, `kvrealloc`.
// - Those functions provide the guarantees of this function.
let raw_ptr = unsafe {
// If `size == 0` and `ptr != NULL` the memory behind the pointer is freed.
self.0(ptr.cast(), size, layout.align(), flags.0, nid.0).cast()
};
let ptr = if size == 0 {
crate::alloc::dangling_from_layout(layout)
} else {
NonNull::new(raw_ptr).ok_or(AllocError)?
};
Ok(NonNull::slice_from_raw_parts(ptr, size))
}
}
impl Kmalloc {
/// Returns a [`Layout`] that makes [`Kmalloc`] fulfill the requested size and alignment of
/// `layout`.
pub fn aligned_layout(layout: Layout) -> Layout {
// Note that `layout.size()` (after padding) is guaranteed to be a multiple of
// `layout.align()` which together with the slab guarantees means that `Kmalloc` will return
// a properly aligned object (see comments in `kmalloc()` for more information).
layout.pad_to_align()
}
}
// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
// - memory remains valid until it is explicitly freed,
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for Kmalloc {
const MIN_ALIGN: usize = ARCH_KMALLOC_MINALIGN;
#[inline]
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
old_layout: Layout,
flags: Flags,
nid: NumaNode,
) -> Result<NonNull<[u8]>, AllocError> {
let layout = Kmalloc::aligned_layout(layout);
// SAFETY: `ReallocFunc::call` has the same safety requirements as `Allocator::realloc`.
unsafe { ReallocFunc::KREALLOC.call(ptr, layout, old_layout, flags, nid) }
}
}
impl Vmalloc {
/// Convert a pointer to a [`Vmalloc`] allocation to a [`page::BorrowedPage`].
///
/// # Examples
///
/// ```
/// # use core::ptr::{NonNull, from_mut};
/// # use kernel::{page, prelude::*};
/// use kernel::alloc::allocator::Vmalloc;
///
/// let mut vbox = VBox::<[u8; page::PAGE_SIZE]>::new_uninit(GFP_KERNEL)?;
///
/// {
/// // SAFETY: By the type invariant of `Box` the inner pointer of `vbox` is non-null.
/// let ptr = unsafe { NonNull::new_unchecked(from_mut(&mut *vbox)) };
///
/// // SAFETY:
/// // `ptr` is a valid pointer to a `Vmalloc` allocation.
/// // `ptr` is valid for the entire lifetime of `page`.
/// let page = unsafe { Vmalloc::to_page(ptr.cast()) };
///
/// // SAFETY: There is no concurrent read or write to the same page.
/// unsafe { page.fill_zero_raw(0, page::PAGE_SIZE)? };
/// }
/// # Ok::<(), Error>(())
/// ```
///
/// # Safety
///
/// - `ptr` must be a valid pointer to a [`Vmalloc`] allocation.
/// - `ptr` must remain valid for the entire duration of `'a`.
pub unsafe fn to_page<'a>(ptr: NonNull<u8>) -> page::BorrowedPage<'a> {
// SAFETY: `ptr` is a valid pointer to `Vmalloc` memory.
let page = unsafe { bindings::vmalloc_to_page(ptr.as_ptr().cast()) };
// SAFETY: `vmalloc_to_page` returns a valid pointer to a `struct page` for a valid pointer
// to `Vmalloc` memory.
let page = unsafe { NonNull::new_unchecked(page) };
// SAFETY:
// - `page` is a valid pointer to a `struct page`, given that by the safety requirements of
// this function `ptr` is a valid pointer to a `Vmalloc` allocation.
// - By the safety requirements of this function `ptr` is valid for the entire lifetime of
// `'a`.
unsafe { page::BorrowedPage::from_raw(page) }
}
}
// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
// - memory remains valid until it is explicitly freed,
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for Vmalloc {
const MIN_ALIGN: usize = kernel::page::PAGE_SIZE;
#[inline]
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
old_layout: Layout,
flags: Flags,
nid: NumaNode,
) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously
// allocated with this `Allocator`.
unsafe { ReallocFunc::VREALLOC.call(ptr, layout, old_layout, flags, nid) }
}
}
// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
// - memory remains valid until it is explicitly freed,
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for KVmalloc {
const MIN_ALIGN: usize = ARCH_KMALLOC_MINALIGN;
#[inline]
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
old_layout: Layout,
flags: Flags,
nid: NumaNode,
) -> Result<NonNull<[u8]>, AllocError> {
// `KVmalloc` may use the `Kmalloc` backend, hence we have to enforce a `Kmalloc`
// compatible layout.
let layout = Kmalloc::aligned_layout(layout);
// SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously
// allocated with this `Allocator`.
unsafe { ReallocFunc::KVREALLOC.call(ptr, layout, old_layout, flags, nid) }
}
}
#[macros::kunit_tests(rust_allocator)]
mod tests {
use super::*;
use core::mem::MaybeUninit;
use kernel::prelude::*;
#[test]
fn test_alignment() -> Result {
const TEST_SIZE: usize = 1024;
const TEST_LARGE_ALIGN_SIZE: usize = kernel::page::PAGE_SIZE * 4;
// These two structs are used to test allocating aligned memory.
// they don't need to be accessed, so they're marked as dead_code.
#[expect(dead_code)]
#[repr(align(128))]
struct Blob([u8; TEST_SIZE]);
#[expect(dead_code)]
#[repr(align(8192))]
struct LargeAlignBlob([u8; TEST_LARGE_ALIGN_SIZE]);
struct TestAlign<T, A: Allocator>(Box<MaybeUninit<T>, A>);
impl<T, A: Allocator> TestAlign<T, A> {
fn new() -> Result<Self> {
Ok(Self(Box::<_, A>::new_uninit(GFP_KERNEL)?))
}
fn is_aligned_to(&self, align: usize) -> bool {
assert!(align.is_power_of_two());
let addr = self.0.as_ptr() as usize;
addr & (align - 1) == 0
}
}
let ta = TestAlign::<Blob, Kmalloc>::new()?;
assert!(ta.is_aligned_to(128));
let ta = TestAlign::<LargeAlignBlob, Kmalloc>::new()?;
assert!(ta.is_aligned_to(8192));
let ta = TestAlign::<Blob, Vmalloc>::new()?;
assert!(ta.is_aligned_to(128));
let ta = TestAlign::<LargeAlignBlob, Vmalloc>::new()?;
assert!(ta.is_aligned_to(8192));
let ta = TestAlign::<Blob, KVmalloc>::new()?;
assert!(ta.is_aligned_to(128));
let ta = TestAlign::<LargeAlignBlob, KVmalloc>::new()?;
assert!(ta.is_aligned_to(8192));
Ok(())
}
}