pin_init/lib.rs
1// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3//! Library to safely and fallibly initialize pinned `struct`s using in-place constructors.
4//!
5//! [Pinning][pinning] is Rust's way of ensuring data does not move.
6//!
7//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
8//! overflow.
9//!
10//! This library's main use-case is in [Rust-for-Linux]. Although this version can be used
11//! standalone.
12//!
13//! There are cases when you want to in-place initialize a struct. For example when it is very big
14//! and moving it from the stack is not an option, because it is bigger than the stack itself.
15//! Another reason would be that you need the address of the object to initialize it. This stands
16//! in direct conflict with Rust's normal process of first initializing an object and then moving
17//! it into it's final memory location. For more information, see
18//! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>.
19//!
20//! This library allows you to do in-place initialization safely.
21//!
22//! ## Nightly Needed for `alloc` feature
23//!
24//! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is
25//! enabled and thus this feature can only be used with a nightly compiler. When enabling the
26//! `alloc` feature, the user will be required to activate `allocator_api` as well.
27//!
28//! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html
29//!
30//! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler.
31//! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this
32//! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std
33//! mode.
34//!
35//! # Overview
36//!
37//! To initialize a `struct` with an in-place constructor you will need two things:
38//! - an in-place constructor,
39//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
40//! [`Box<T>`] or any other smart pointer that supports this library).
41//!
42//! To get an in-place constructor there are generally three options:
43//! - directly creating an in-place constructor using the [`pin_init!`] macro,
44//! - a custom function/macro returning an in-place constructor provided by someone else,
45//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
46//!
47//! Aside from pinned initialization, this library also supports in-place construction without
48//! pinning, the macros/types/functions are generally named like the pinned variants without the
49//! `pin_` prefix.
50//!
51//! # Examples
52//!
53//! Throughout the examples we will often make use of the `CMutex` type which can be found in
54//! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from
55//! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list
56//! requires it to be pinned to be locked and thus is a prime candidate for using this library.
57//!
58//! ## Using the [`pin_init!`] macro
59//!
60//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
61//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
62//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
63//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
64//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
65//!
66//! ```rust
67//! # #![expect(clippy::disallowed_names)]
68//! # #![feature(allocator_api)]
69//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
70//! # use core::pin::Pin;
71//! use pin_init::{pin_data, pin_init, InPlaceInit};
72//!
73//! #[pin_data]
74//! struct Foo {
75//! #[pin]
76//! a: CMutex<usize>,
77//! b: u32,
78//! }
79//!
80//! let foo = pin_init!(Foo {
81//! a <- CMutex::new(42),
82//! b: 24,
83//! });
84//! # let _ = Box::pin_init(foo);
85//! ```
86//!
87//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
88//! (or just the stack) to actually initialize a `Foo`:
89//!
90//! ```rust
91//! # #![expect(clippy::disallowed_names)]
92//! # #![feature(allocator_api)]
93//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
94//! # use core::{alloc::AllocError, pin::Pin};
95//! # use pin_init::*;
96//! #
97//! # #[pin_data]
98//! # struct Foo {
99//! # #[pin]
100//! # a: CMutex<usize>,
101//! # b: u32,
102//! # }
103//! #
104//! # let foo = pin_init!(Foo {
105//! # a <- CMutex::new(42),
106//! # b: 24,
107//! # });
108//! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
109//! ```
110//!
111//! For more information see the [`pin_init!`] macro.
112//!
113//! ## Using a custom function/macro that returns an initializer
114//!
115//! Many types that use this library supply a function/macro that returns an initializer, because
116//! the above method only works for types where you can access the fields.
117//!
118//! ```rust
119//! # #![feature(allocator_api)]
120//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
121//! # use pin_init::*;
122//! # use std::sync::Arc;
123//! # use core::pin::Pin;
124//! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
125//! ```
126//!
127//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
128//!
129//! ```rust
130//! # #![feature(allocator_api)]
131//! # use pin_init::*;
132//! # #[path = "../examples/error.rs"] mod error; use error::Error;
133//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
134//! #[pin_data]
135//! struct DriverData {
136//! #[pin]
137//! status: CMutex<i32>,
138//! buffer: Box<[u8; 1_000_000]>,
139//! }
140//!
141//! impl DriverData {
142//! fn new() -> impl PinInit<Self, Error> {
143//! try_pin_init!(Self {
144//! status <- CMutex::new(0),
145//! buffer: Box::init(pin_init::zeroed())?,
146//! }? Error)
147//! }
148//! }
149//! ```
150//!
151//! ## Manual creation of an initializer
152//!
153//! Often when working with primitives the previous approaches are not sufficient. That is where
154//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
155//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
156//! actually does the initialization in the correct way. Here are the things to look out for
157//! (we are calling the parameter to the closure `slot`):
158//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
159//! `slot` now contains a valid bit pattern for the type `T`,
160//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
161//! you need to take care to clean up anything if your initialization fails mid-way,
162//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
163//! `slot` gets called.
164//!
165//! ```rust
166//! # #![feature(extern_types)]
167//! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure};
168//! use core::{
169//! ptr::addr_of_mut,
170//! marker::PhantomPinned,
171//! cell::UnsafeCell,
172//! pin::Pin,
173//! mem::MaybeUninit,
174//! };
175//! mod bindings {
176//! #[repr(C)]
177//! pub struct foo {
178//! /* fields from C ... */
179//! }
180//! extern "C" {
181//! pub fn init_foo(ptr: *mut foo);
182//! pub fn destroy_foo(ptr: *mut foo);
183//! #[must_use = "you must check the error return code"]
184//! pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
185//! }
186//! }
187//!
188//! /// # Invariants
189//! ///
190//! /// `foo` is always initialized
191//! #[pin_data(PinnedDrop)]
192//! pub struct RawFoo {
193//! #[pin]
194//! _p: PhantomPinned,
195//! #[pin]
196//! foo: UnsafeCell<MaybeUninit<bindings::foo>>,
197//! }
198//!
199//! impl RawFoo {
200//! pub fn new(flags: u32) -> impl PinInit<Self, i32> {
201//! // SAFETY:
202//! // - when the closure returns `Ok(())`, then it has successfully initialized and
203//! // enabled `foo`,
204//! // - when it returns `Err(e)`, then it has cleaned up before
205//! unsafe {
206//! pin_init_from_closure(move |slot: *mut Self| {
207//! // `slot` contains uninit memory, avoid creating a reference.
208//! let foo = addr_of_mut!((*slot).foo);
209//! let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
210//!
211//! // Initialize the `foo`
212//! bindings::init_foo(foo);
213//!
214//! // Try to enable it.
215//! let err = bindings::enable_foo(foo, flags);
216//! if err != 0 {
217//! // Enabling has failed, first clean up the foo and then return the error.
218//! bindings::destroy_foo(foo);
219//! Err(err)
220//! } else {
221//! // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
222//! Ok(())
223//! }
224//! })
225//! }
226//! }
227//! }
228//!
229//! #[pinned_drop]
230//! impl PinnedDrop for RawFoo {
231//! fn drop(self: Pin<&mut Self>) {
232//! // SAFETY: Since `foo` is initialized, destroying is safe.
233//! unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
234//! }
235//! }
236//! ```
237//!
238//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
239//! the `kernel` crate. The [`sync`] module is a good starting point.
240//!
241//! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html
242//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
243//! [structurally pinned fields]:
244//! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
245//! [stack]: crate::stack_pin_init
246#![cfg_attr(
247 kernel,
248 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
249)]
250#![cfg_attr(
251 kernel,
252 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
253)]
254#![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
255#![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
256//! [`impl PinInit<Foo>`]: crate::PinInit
257//! [`impl PinInit<T, E>`]: crate::PinInit
258//! [`impl Init<T, E>`]: crate::Init
259//! [Rust-for-Linux]: https://rust-for-linux.com/
260
261#![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))]
262#![cfg_attr(
263 all(
264 any(feature = "alloc", feature = "std"),
265 not(RUSTC_NEW_UNINIT_IS_STABLE)
266 ),
267 feature(new_uninit)
268)]
269#![forbid(missing_docs, unsafe_op_in_unsafe_fn)]
270#![cfg_attr(not(feature = "std"), no_std)]
271#![cfg_attr(feature = "alloc", feature(allocator_api))]
272
273use core::{
274 cell::UnsafeCell,
275 convert::Infallible,
276 marker::PhantomData,
277 mem::MaybeUninit,
278 num::*,
279 pin::Pin,
280 ptr::{self, NonNull},
281};
282
283#[doc(hidden)]
284pub mod __internal;
285#[doc(hidden)]
286pub mod macros;
287
288#[cfg(any(feature = "std", feature = "alloc"))]
289mod alloc;
290#[cfg(any(feature = "std", feature = "alloc"))]
291pub use alloc::InPlaceInit;
292
293/// Used to specify the pinning information of the fields of a struct.
294///
295/// This is somewhat similar in purpose as
296/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
297/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
298/// field you want to structurally pin.
299///
300/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
301/// then `#[pin]` directs the type of initializer that is required.
302///
303/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
304/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
305/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
306///
307/// # Examples
308///
309/// ```
310/// # #![feature(allocator_api)]
311/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
312/// use pin_init::pin_data;
313///
314/// enum Command {
315/// /* ... */
316/// }
317///
318/// #[pin_data]
319/// struct DriverData {
320/// #[pin]
321/// queue: CMutex<Vec<Command>>,
322/// buf: Box<[u8; 1024 * 1024]>,
323/// }
324/// ```
325///
326/// ```
327/// # #![feature(allocator_api)]
328/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
329/// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
330/// use core::pin::Pin;
331/// use pin_init::{pin_data, pinned_drop, PinnedDrop};
332///
333/// enum Command {
334/// /* ... */
335/// }
336///
337/// #[pin_data(PinnedDrop)]
338/// struct DriverData {
339/// #[pin]
340/// queue: CMutex<Vec<Command>>,
341/// buf: Box<[u8; 1024 * 1024]>,
342/// raw_info: *mut bindings::info,
343/// }
344///
345/// #[pinned_drop]
346/// impl PinnedDrop for DriverData {
347/// fn drop(self: Pin<&mut Self>) {
348/// unsafe { bindings::destroy_info(self.raw_info) };
349/// }
350/// }
351/// ```
352pub use ::pin_init_internal::pin_data;
353
354/// Used to implement `PinnedDrop` safely.
355///
356/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
357///
358/// # Examples
359///
360/// ```
361/// # #![feature(allocator_api)]
362/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
363/// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
364/// use core::pin::Pin;
365/// use pin_init::{pin_data, pinned_drop, PinnedDrop};
366///
367/// enum Command {
368/// /* ... */
369/// }
370///
371/// #[pin_data(PinnedDrop)]
372/// struct DriverData {
373/// #[pin]
374/// queue: CMutex<Vec<Command>>,
375/// buf: Box<[u8; 1024 * 1024]>,
376/// raw_info: *mut bindings::info,
377/// }
378///
379/// #[pinned_drop]
380/// impl PinnedDrop for DriverData {
381/// fn drop(self: Pin<&mut Self>) {
382/// unsafe { bindings::destroy_info(self.raw_info) };
383/// }
384/// }
385/// ```
386pub use ::pin_init_internal::pinned_drop;
387
388/// Derives the [`Zeroable`] trait for the given struct.
389///
390/// This can only be used for structs where every field implements the [`Zeroable`] trait.
391///
392/// # Examples
393///
394/// ```
395/// use pin_init::Zeroable;
396///
397/// #[derive(Zeroable)]
398/// pub struct DriverData {
399/// id: i64,
400/// buf_ptr: *mut u8,
401/// len: usize,
402/// }
403/// ```
404pub use ::pin_init_internal::Zeroable;
405
406/// Initialize and pin a type directly on the stack.
407///
408/// # Examples
409///
410/// ```rust
411/// # #![expect(clippy::disallowed_names)]
412/// # #![feature(allocator_api)]
413/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
414/// # use pin_init::*;
415/// # use core::pin::Pin;
416/// #[pin_data]
417/// struct Foo {
418/// #[pin]
419/// a: CMutex<usize>,
420/// b: Bar,
421/// }
422///
423/// #[pin_data]
424/// struct Bar {
425/// x: u32,
426/// }
427///
428/// stack_pin_init!(let foo = pin_init!(Foo {
429/// a <- CMutex::new(42),
430/// b: Bar {
431/// x: 64,
432/// },
433/// }));
434/// let foo: Pin<&mut Foo> = foo;
435/// println!("a: {}", &*foo.a.lock());
436/// ```
437///
438/// # Syntax
439///
440/// A normal `let` binding with optional type annotation. The expression is expected to implement
441/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
442/// type, then use [`stack_try_pin_init!`].
443#[macro_export]
444macro_rules! stack_pin_init {
445 (let $var:ident $(: $t:ty)? = $val:expr) => {
446 let val = $val;
447 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
448 let mut $var = match $crate::__internal::StackInit::init($var, val) {
449 Ok(res) => res,
450 Err(x) => {
451 let x: ::core::convert::Infallible = x;
452 match x {}
453 }
454 };
455 };
456}
457
458/// Initialize and pin a type directly on the stack.
459///
460/// # Examples
461///
462/// ```rust
463/// # #![expect(clippy::disallowed_names)]
464/// # #![feature(allocator_api)]
465/// # #[path = "../examples/error.rs"] mod error; use error::Error;
466/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
467/// # use pin_init::*;
468/// #[pin_data]
469/// struct Foo {
470/// #[pin]
471/// a: CMutex<usize>,
472/// b: Box<Bar>,
473/// }
474///
475/// struct Bar {
476/// x: u32,
477/// }
478///
479/// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo {
480/// a <- CMutex::new(42),
481/// b: Box::try_new(Bar {
482/// x: 64,
483/// })?,
484/// }? Error));
485/// let foo = foo.unwrap();
486/// println!("a: {}", &*foo.a.lock());
487/// ```
488///
489/// ```rust
490/// # #![expect(clippy::disallowed_names)]
491/// # #![feature(allocator_api)]
492/// # #[path = "../examples/error.rs"] mod error; use error::Error;
493/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
494/// # use pin_init::*;
495/// #[pin_data]
496/// struct Foo {
497/// #[pin]
498/// a: CMutex<usize>,
499/// b: Box<Bar>,
500/// }
501///
502/// struct Bar {
503/// x: u32,
504/// }
505///
506/// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo {
507/// a <- CMutex::new(42),
508/// b: Box::try_new(Bar {
509/// x: 64,
510/// })?,
511/// }? Error));
512/// println!("a: {}", &*foo.a.lock());
513/// # Ok::<_, Error>(())
514/// ```
515///
516/// # Syntax
517///
518/// A normal `let` binding with optional type annotation. The expression is expected to implement
519/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
520/// `=` will propagate this error.
521#[macro_export]
522macro_rules! stack_try_pin_init {
523 (let $var:ident $(: $t:ty)? = $val:expr) => {
524 let val = $val;
525 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
526 let mut $var = $crate::__internal::StackInit::init($var, val);
527 };
528 (let $var:ident $(: $t:ty)? =? $val:expr) => {
529 let val = $val;
530 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
531 let mut $var = $crate::__internal::StackInit::init($var, val)?;
532 };
533}
534
535/// Construct an in-place, pinned initializer for `struct`s.
536///
537/// This macro defaults the error to [`Infallible`]. If you need a different error, then use
538/// [`try_pin_init!`].
539///
540/// The syntax is almost identical to that of a normal `struct` initializer:
541///
542/// ```rust
543/// # use pin_init::*;
544/// # use core::pin::Pin;
545/// #[pin_data]
546/// struct Foo {
547/// a: usize,
548/// b: Bar,
549/// }
550///
551/// #[pin_data]
552/// struct Bar {
553/// x: u32,
554/// }
555///
556/// # fn demo() -> impl PinInit<Foo> {
557/// let a = 42;
558///
559/// let initializer = pin_init!(Foo {
560/// a,
561/// b: Bar {
562/// x: 64,
563/// },
564/// });
565/// # initializer }
566/// # Box::pin_init(demo()).unwrap();
567/// ```
568///
569/// Arbitrary Rust expressions can be used to set the value of a variable.
570///
571/// The fields are initialized in the order that they appear in the initializer. So it is possible
572/// to read already initialized fields using raw pointers.
573///
574/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
575/// initializer.
576///
577/// # Init-functions
578///
579/// When working with this library it is often desired to let others construct your types without
580/// giving access to all fields. This is where you would normally write a plain function `new` that
581/// would return a new instance of your type. With this library that is also possible. However,
582/// there are a few extra things to keep in mind.
583///
584/// To create an initializer function, simply declare it like this:
585///
586/// ```rust
587/// # use pin_init::*;
588/// # use core::pin::Pin;
589/// # #[pin_data]
590/// # struct Foo {
591/// # a: usize,
592/// # b: Bar,
593/// # }
594/// # #[pin_data]
595/// # struct Bar {
596/// # x: u32,
597/// # }
598/// impl Foo {
599/// fn new() -> impl PinInit<Self> {
600/// pin_init!(Self {
601/// a: 42,
602/// b: Bar {
603/// x: 64,
604/// },
605/// })
606/// }
607/// }
608/// ```
609///
610/// Users of `Foo` can now create it like this:
611///
612/// ```rust
613/// # #![expect(clippy::disallowed_names)]
614/// # use pin_init::*;
615/// # use core::pin::Pin;
616/// # #[pin_data]
617/// # struct Foo {
618/// # a: usize,
619/// # b: Bar,
620/// # }
621/// # #[pin_data]
622/// # struct Bar {
623/// # x: u32,
624/// # }
625/// # impl Foo {
626/// # fn new() -> impl PinInit<Self> {
627/// # pin_init!(Self {
628/// # a: 42,
629/// # b: Bar {
630/// # x: 64,
631/// # },
632/// # })
633/// # }
634/// # }
635/// let foo = Box::pin_init(Foo::new());
636/// ```
637///
638/// They can also easily embed it into their own `struct`s:
639///
640/// ```rust
641/// # use pin_init::*;
642/// # use core::pin::Pin;
643/// # #[pin_data]
644/// # struct Foo {
645/// # a: usize,
646/// # b: Bar,
647/// # }
648/// # #[pin_data]
649/// # struct Bar {
650/// # x: u32,
651/// # }
652/// # impl Foo {
653/// # fn new() -> impl PinInit<Self> {
654/// # pin_init!(Self {
655/// # a: 42,
656/// # b: Bar {
657/// # x: 64,
658/// # },
659/// # })
660/// # }
661/// # }
662/// #[pin_data]
663/// struct FooContainer {
664/// #[pin]
665/// foo1: Foo,
666/// #[pin]
667/// foo2: Foo,
668/// other: u32,
669/// }
670///
671/// impl FooContainer {
672/// fn new(other: u32) -> impl PinInit<Self> {
673/// pin_init!(Self {
674/// foo1 <- Foo::new(),
675/// foo2 <- Foo::new(),
676/// other,
677/// })
678/// }
679/// }
680/// ```
681///
682/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
683/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
684/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
685///
686/// # Syntax
687///
688/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
689/// the following modifications is expected:
690/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
691/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
692/// pointer named `this` inside of the initializer.
693/// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
694/// struct, this initializes every field with 0 and then runs all initializers specified in the
695/// body. This can only be done if [`Zeroable`] is implemented for the struct.
696///
697/// For instance:
698///
699/// ```rust
700/// # use pin_init::*;
701/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
702/// #[pin_data]
703/// #[derive(Zeroable)]
704/// struct Buf {
705/// // `ptr` points into `buf`.
706/// ptr: *mut u8,
707/// buf: [u8; 64],
708/// #[pin]
709/// pin: PhantomPinned,
710/// }
711///
712/// let init = pin_init!(&this in Buf {
713/// buf: [0; 64],
714/// // SAFETY: TODO.
715/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
716/// pin: PhantomPinned,
717/// });
718/// let init = pin_init!(Buf {
719/// buf: [1; 64],
720/// ..Zeroable::zeroed()
721/// });
722/// ```
723///
724/// [`NonNull<Self>`]: core::ptr::NonNull
725// For a detailed example of how this macro works, see the module documentation of the hidden
726// module `macros` inside of `macros.rs`.
727#[macro_export]
728macro_rules! pin_init {
729 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
730 $($fields:tt)*
731 }) => {
732 $crate::try_pin_init!($(&$this in)? $t $(::<$($generics),*>)? {
733 $($fields)*
734 }? ::core::convert::Infallible)
735 };
736}
737
738/// Construct an in-place, fallible pinned initializer for `struct`s.
739///
740/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
741///
742/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
743/// initialization and return the error.
744///
745/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
746/// initialization fails, the memory can be safely deallocated without any further modifications.
747///
748/// The syntax is identical to [`pin_init!`] with the following exception: you must append `? $type`
749/// after the `struct` initializer to specify the error type you want to use.
750///
751/// # Examples
752///
753/// ```rust
754/// # #![feature(allocator_api)]
755/// # #[path = "../examples/error.rs"] mod error; use error::Error;
756/// use pin_init::{pin_data, try_pin_init, PinInit, InPlaceInit, zeroed};
757///
758/// #[pin_data]
759/// struct BigBuf {
760/// big: Box<[u8; 1024 * 1024 * 1024]>,
761/// small: [u8; 1024 * 1024],
762/// ptr: *mut u8,
763/// }
764///
765/// impl BigBuf {
766/// fn new() -> impl PinInit<Self, Error> {
767/// try_pin_init!(Self {
768/// big: Box::init(zeroed())?,
769/// small: [0; 1024 * 1024],
770/// ptr: core::ptr::null_mut(),
771/// }? Error)
772/// }
773/// }
774/// # let _ = Box::pin_init(BigBuf::new());
775/// ```
776// For a detailed example of how this macro works, see the module documentation of the hidden
777// module `macros` inside of `macros.rs`.
778#[macro_export]
779macro_rules! try_pin_init {
780 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
781 $($fields:tt)*
782 }? $err:ty) => {
783 $crate::__init_internal!(
784 @this($($this)?),
785 @typ($t $(::<$($generics),*>)? ),
786 @fields($($fields)*),
787 @error($err),
788 @data(PinData, use_data),
789 @has_data(HasPinData, __pin_data),
790 @construct_closure(pin_init_from_closure),
791 @munch_fields($($fields)*),
792 )
793 }
794}
795
796/// Construct an in-place initializer for `struct`s.
797///
798/// This macro defaults the error to [`Infallible`]. If you need a different error, then use
799/// [`try_init!`].
800///
801/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
802/// - `unsafe` code must guarantee either full initialization or return an error and allow
803/// deallocation of the memory.
804/// - the fields are initialized in the order given in the initializer.
805/// - no references to fields are allowed to be created inside of the initializer.
806///
807/// This initializer is for initializing data in-place that might later be moved. If you want to
808/// pin-initialize, use [`pin_init!`].
809///
810/// # Examples
811///
812/// ```rust
813/// # #![feature(allocator_api)]
814/// # #[path = "../examples/error.rs"] mod error; use error::Error;
815/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
816/// # use pin_init::InPlaceInit;
817/// use pin_init::{init, Init, zeroed};
818///
819/// struct BigBuf {
820/// small: [u8; 1024 * 1024],
821/// }
822///
823/// impl BigBuf {
824/// fn new() -> impl Init<Self> {
825/// init!(Self {
826/// small <- zeroed(),
827/// })
828/// }
829/// }
830/// # let _ = Box::init(BigBuf::new());
831/// ```
832// For a detailed example of how this macro works, see the module documentation of the hidden
833// module `macros` inside of `macros.rs`.
834#[macro_export]
835macro_rules! init {
836 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
837 $($fields:tt)*
838 }) => {
839 $crate::try_init!($(&$this in)? $t $(::<$($generics),*>)? {
840 $($fields)*
841 }? ::core::convert::Infallible)
842 }
843}
844
845/// Construct an in-place fallible initializer for `struct`s.
846///
847/// If the initialization can complete without error (or [`Infallible`]), then use
848/// [`init!`].
849///
850/// The syntax is identical to [`try_pin_init!`]. You need to specify a custom error
851/// via `? $type` after the `struct` initializer.
852/// The safety caveats from [`try_pin_init!`] also apply:
853/// - `unsafe` code must guarantee either full initialization or return an error and allow
854/// deallocation of the memory.
855/// - the fields are initialized in the order given in the initializer.
856/// - no references to fields are allowed to be created inside of the initializer.
857///
858/// # Examples
859///
860/// ```rust
861/// # #![feature(allocator_api)]
862/// # use core::alloc::AllocError;
863/// # use pin_init::InPlaceInit;
864/// use pin_init::{try_init, Init, zeroed};
865///
866/// struct BigBuf {
867/// big: Box<[u8; 1024 * 1024 * 1024]>,
868/// small: [u8; 1024 * 1024],
869/// }
870///
871/// impl BigBuf {
872/// fn new() -> impl Init<Self, AllocError> {
873/// try_init!(Self {
874/// big: Box::init(zeroed())?,
875/// small: [0; 1024 * 1024],
876/// }? AllocError)
877/// }
878/// }
879/// # let _ = Box::init(BigBuf::new());
880/// ```
881// For a detailed example of how this macro works, see the module documentation of the hidden
882// module `macros` inside of `macros.rs`.
883#[macro_export]
884macro_rules! try_init {
885 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
886 $($fields:tt)*
887 }? $err:ty) => {
888 $crate::__init_internal!(
889 @this($($this)?),
890 @typ($t $(::<$($generics),*>)?),
891 @fields($($fields)*),
892 @error($err),
893 @data(InitData, /*no use_data*/),
894 @has_data(HasInitData, __init_data),
895 @construct_closure(init_from_closure),
896 @munch_fields($($fields)*),
897 )
898 }
899}
900
901/// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
902/// structurally pinned.
903///
904/// # Example
905///
906/// This will succeed:
907/// ```
908/// use pin_init::{pin_data, assert_pinned};
909///
910/// #[pin_data]
911/// struct MyStruct {
912/// #[pin]
913/// some_field: u64,
914/// }
915///
916/// assert_pinned!(MyStruct, some_field, u64);
917/// ```
918///
919/// This will fail:
920/// ```compile_fail
921/// use pin_init::{pin_data, assert_pinned};
922///
923/// #[pin_data]
924/// struct MyStruct {
925/// some_field: u64,
926/// }
927///
928/// assert_pinned!(MyStruct, some_field, u64);
929/// ```
930///
931/// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
932/// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
933/// only be used when the macro is invoked from a function body.
934/// ```
935/// # use core::pin::Pin;
936/// use pin_init::{pin_data, assert_pinned};
937///
938/// #[pin_data]
939/// struct Foo<T> {
940/// #[pin]
941/// elem: T,
942/// }
943///
944/// impl<T> Foo<T> {
945/// fn project(self: Pin<&mut Self>) -> Pin<&mut T> {
946/// assert_pinned!(Foo<T>, elem, T, inline);
947///
948/// // SAFETY: The field is structurally pinned.
949/// unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
950/// }
951/// }
952/// ```
953#[macro_export]
954macro_rules! assert_pinned {
955 ($ty:ty, $field:ident, $field_ty:ty, inline) => {
956 let _ = move |ptr: *mut $field_ty| {
957 // SAFETY: This code is unreachable.
958 let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() };
959 let init = $crate::__internal::AlwaysFail::<$field_ty>::new();
960 // SAFETY: This code is unreachable.
961 unsafe { data.$field(ptr, init) }.ok();
962 };
963 };
964
965 ($ty:ty, $field:ident, $field_ty:ty) => {
966 const _: () = {
967 $crate::assert_pinned!($ty, $field, $field_ty, inline);
968 };
969 };
970}
971
972/// A pin-initializer for the type `T`.
973///
974/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
975/// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]).
976///
977/// Also see the [module description](self).
978///
979/// # Safety
980///
981/// When implementing this trait you will need to take great care. Also there are probably very few
982/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
983///
984/// The [`PinInit::__pinned_init`] function:
985/// - returns `Ok(())` if it initialized every field of `slot`,
986/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
987/// - `slot` can be deallocated without UB occurring,
988/// - `slot` does not need to be dropped,
989/// - `slot` is not partially initialized.
990/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
991///
992#[cfg_attr(
993 kernel,
994 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
995)]
996#[cfg_attr(
997 kernel,
998 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
999)]
1000#[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
1001#[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
1002#[must_use = "An initializer must be used in order to create its value."]
1003pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
1004 /// Initializes `slot`.
1005 ///
1006 /// # Safety
1007 ///
1008 /// - `slot` is a valid pointer to uninitialized memory.
1009 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1010 /// deallocate.
1011 /// - `slot` will not move until it is dropped, i.e. it will be pinned.
1012 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
1013
1014 /// First initializes the value using `self` then calls the function `f` with the initialized
1015 /// value.
1016 ///
1017 /// If `f` returns an error the value is dropped and the initializer will forward the error.
1018 ///
1019 /// # Examples
1020 ///
1021 /// ```rust
1022 /// # #![feature(allocator_api)]
1023 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1024 /// # use pin_init::*;
1025 /// let mtx_init = CMutex::new(42);
1026 /// // Make the initializer print the value.
1027 /// let mtx_init = mtx_init.pin_chain(|mtx| {
1028 /// println!("{:?}", mtx.get_data_mut());
1029 /// Ok(())
1030 /// });
1031 /// ```
1032 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
1033 where
1034 F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1035 {
1036 ChainPinInit(self, f, PhantomData)
1037 }
1038}
1039
1040/// An initializer returned by [`PinInit::pin_chain`].
1041pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
1042
1043// SAFETY: The `__pinned_init` function is implemented such that it
1044// - returns `Ok(())` on successful initialization,
1045// - returns `Err(err)` on error and in this case `slot` will be dropped.
1046// - considers `slot` pinned.
1047unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
1048where
1049 I: PinInit<T, E>,
1050 F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1051{
1052 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1053 // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
1054 unsafe { self.0.__pinned_init(slot)? };
1055 // SAFETY: The above call initialized `slot` and we still have unique access.
1056 let val = unsafe { &mut *slot };
1057 // SAFETY: `slot` is considered pinned.
1058 let val = unsafe { Pin::new_unchecked(val) };
1059 // SAFETY: `slot` was initialized above.
1060 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
1061 }
1062}
1063
1064/// An initializer for `T`.
1065///
1066/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1067/// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because
1068/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
1069///
1070/// Also see the [module description](self).
1071///
1072/// # Safety
1073///
1074/// When implementing this trait you will need to take great care. Also there are probably very few
1075/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
1076///
1077/// The [`Init::__init`] function:
1078/// - returns `Ok(())` if it initialized every field of `slot`,
1079/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1080/// - `slot` can be deallocated without UB occurring,
1081/// - `slot` does not need to be dropped,
1082/// - `slot` is not partially initialized.
1083/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1084///
1085/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
1086/// code as `__init`.
1087///
1088/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
1089/// move the pointee after initialization.
1090///
1091#[cfg_attr(
1092 kernel,
1093 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
1094)]
1095#[cfg_attr(
1096 kernel,
1097 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
1098)]
1099#[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
1100#[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
1101#[must_use = "An initializer must be used in order to create its value."]
1102pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
1103 /// Initializes `slot`.
1104 ///
1105 /// # Safety
1106 ///
1107 /// - `slot` is a valid pointer to uninitialized memory.
1108 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1109 /// deallocate.
1110 unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1111
1112 /// First initializes the value using `self` then calls the function `f` with the initialized
1113 /// value.
1114 ///
1115 /// If `f` returns an error the value is dropped and the initializer will forward the error.
1116 ///
1117 /// # Examples
1118 ///
1119 /// ```rust
1120 /// # #![expect(clippy::disallowed_names)]
1121 /// use pin_init::{init, zeroed, Init};
1122 ///
1123 /// struct Foo {
1124 /// buf: [u8; 1_000_000],
1125 /// }
1126 ///
1127 /// impl Foo {
1128 /// fn setup(&mut self) {
1129 /// println!("Setting up foo");
1130 /// }
1131 /// }
1132 ///
1133 /// let foo = init!(Foo {
1134 /// buf <- zeroed()
1135 /// }).chain(|foo| {
1136 /// foo.setup();
1137 /// Ok(())
1138 /// });
1139 /// ```
1140 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
1141 where
1142 F: FnOnce(&mut T) -> Result<(), E>,
1143 {
1144 ChainInit(self, f, PhantomData)
1145 }
1146}
1147
1148/// An initializer returned by [`Init::chain`].
1149pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
1150
1151// SAFETY: The `__init` function is implemented such that it
1152// - returns `Ok(())` on successful initialization,
1153// - returns `Err(err)` on error and in this case `slot` will be dropped.
1154unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
1155where
1156 I: Init<T, E>,
1157 F: FnOnce(&mut T) -> Result<(), E>,
1158{
1159 unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1160 // SAFETY: All requirements fulfilled since this function is `__init`.
1161 unsafe { self.0.__pinned_init(slot)? };
1162 // SAFETY: The above call initialized `slot` and we still have unique access.
1163 (self.1)(unsafe { &mut *slot }).inspect_err(|_|
1164 // SAFETY: `slot` was initialized above.
1165 unsafe { core::ptr::drop_in_place(slot) })
1166 }
1167}
1168
1169// SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1170unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1171where
1172 I: Init<T, E>,
1173 F: FnOnce(&mut T) -> Result<(), E>,
1174{
1175 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1176 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1177 unsafe { self.__init(slot) }
1178 }
1179}
1180
1181/// Creates a new [`PinInit<T, E>`] from the given closure.
1182///
1183/// # Safety
1184///
1185/// The closure:
1186/// - returns `Ok(())` if it initialized every field of `slot`,
1187/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1188/// - `slot` can be deallocated without UB occurring,
1189/// - `slot` does not need to be dropped,
1190/// - `slot` is not partially initialized.
1191/// - may assume that the `slot` does not move if `T: !Unpin`,
1192/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1193#[inline]
1194pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1195 f: impl FnOnce(*mut T) -> Result<(), E>,
1196) -> impl PinInit<T, E> {
1197 __internal::InitClosure(f, PhantomData)
1198}
1199
1200/// Creates a new [`Init<T, E>`] from the given closure.
1201///
1202/// # Safety
1203///
1204/// The closure:
1205/// - returns `Ok(())` if it initialized every field of `slot`,
1206/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1207/// - `slot` can be deallocated without UB occurring,
1208/// - `slot` does not need to be dropped,
1209/// - `slot` is not partially initialized.
1210/// - the `slot` may move after initialization.
1211/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1212#[inline]
1213pub const unsafe fn init_from_closure<T: ?Sized, E>(
1214 f: impl FnOnce(*mut T) -> Result<(), E>,
1215) -> impl Init<T, E> {
1216 __internal::InitClosure(f, PhantomData)
1217}
1218
1219/// An initializer that leaves the memory uninitialized.
1220///
1221/// The initializer is a no-op. The `slot` memory is not changed.
1222#[inline]
1223pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1224 // SAFETY: The memory is allowed to be uninitialized.
1225 unsafe { init_from_closure(|_| Ok(())) }
1226}
1227
1228/// Initializes an array by initializing each element via the provided initializer.
1229///
1230/// # Examples
1231///
1232/// ```rust
1233/// # use pin_init::*;
1234/// use pin_init::init_array_from_fn;
1235/// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap();
1236/// assert_eq!(array.len(), 1_000);
1237/// ```
1238pub fn init_array_from_fn<I, const N: usize, T, E>(
1239 mut make_init: impl FnMut(usize) -> I,
1240) -> impl Init<[T; N], E>
1241where
1242 I: Init<T, E>,
1243{
1244 let init = move |slot: *mut [T; N]| {
1245 let slot = slot.cast::<T>();
1246 for i in 0..N {
1247 let init = make_init(i);
1248 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1249 let ptr = unsafe { slot.add(i) };
1250 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1251 // requirements.
1252 if let Err(e) = unsafe { init.__init(ptr) } {
1253 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1254 // `Err` below, `slot` will be considered uninitialized memory.
1255 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1256 return Err(e);
1257 }
1258 }
1259 Ok(())
1260 };
1261 // SAFETY: The initializer above initializes every element of the array. On failure it drops
1262 // any initialized elements and returns `Err`.
1263 unsafe { init_from_closure(init) }
1264}
1265
1266/// Initializes an array by initializing each element via the provided initializer.
1267///
1268/// # Examples
1269///
1270/// ```rust
1271/// # #![feature(allocator_api)]
1272/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1273/// # use pin_init::*;
1274/// # use core::pin::Pin;
1275/// use pin_init::pin_init_array_from_fn;
1276/// use std::sync::Arc;
1277/// let array: Pin<Arc<[CMutex<usize>; 1_000]>> =
1278/// Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap();
1279/// assert_eq!(array.len(), 1_000);
1280/// ```
1281pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1282 mut make_init: impl FnMut(usize) -> I,
1283) -> impl PinInit<[T; N], E>
1284where
1285 I: PinInit<T, E>,
1286{
1287 let init = move |slot: *mut [T; N]| {
1288 let slot = slot.cast::<T>();
1289 for i in 0..N {
1290 let init = make_init(i);
1291 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1292 let ptr = unsafe { slot.add(i) };
1293 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1294 // requirements.
1295 if let Err(e) = unsafe { init.__pinned_init(ptr) } {
1296 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1297 // `Err` below, `slot` will be considered uninitialized memory.
1298 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1299 return Err(e);
1300 }
1301 }
1302 Ok(())
1303 };
1304 // SAFETY: The initializer above initializes every element of the array. On failure it drops
1305 // any initialized elements and returns `Err`.
1306 unsafe { pin_init_from_closure(init) }
1307}
1308
1309// SAFETY: Every type can be initialized by-value.
1310unsafe impl<T, E> Init<T, E> for T {
1311 unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1312 // SAFETY: TODO.
1313 unsafe { slot.write(self) };
1314 Ok(())
1315 }
1316}
1317
1318// SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1319unsafe impl<T, E> PinInit<T, E> for T {
1320 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1321 // SAFETY: TODO.
1322 unsafe { self.__init(slot) }
1323 }
1324}
1325
1326/// Smart pointer containing uninitialized memory and that can write a value.
1327pub trait InPlaceWrite<T> {
1328 /// The type `Self` turns into when the contents are initialized.
1329 type Initialized;
1330
1331 /// Use the given initializer to write a value into `self`.
1332 ///
1333 /// Does not drop the current value and considers it as uninitialized memory.
1334 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1335
1336 /// Use the given pin-initializer to write a value into `self`.
1337 ///
1338 /// Does not drop the current value and considers it as uninitialized memory.
1339 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1340}
1341
1342/// Trait facilitating pinned destruction.
1343///
1344/// Use [`pinned_drop`] to implement this trait safely:
1345///
1346/// ```rust
1347/// # #![feature(allocator_api)]
1348/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1349/// # use pin_init::*;
1350/// use core::pin::Pin;
1351/// #[pin_data(PinnedDrop)]
1352/// struct Foo {
1353/// #[pin]
1354/// mtx: CMutex<usize>,
1355/// }
1356///
1357/// #[pinned_drop]
1358/// impl PinnedDrop for Foo {
1359/// fn drop(self: Pin<&mut Self>) {
1360/// println!("Foo is being dropped!");
1361/// }
1362/// }
1363/// ```
1364///
1365/// # Safety
1366///
1367/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1368pub unsafe trait PinnedDrop: __internal::HasPinData {
1369 /// Executes the pinned destructor of this type.
1370 ///
1371 /// While this function is marked safe, it is actually unsafe to call it manually. For this
1372 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1373 /// and thus prevents this function from being called where it should not.
1374 ///
1375 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1376 /// automatically.
1377 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1378}
1379
1380/// Marker trait for types that can be initialized by writing just zeroes.
1381///
1382/// # Safety
1383///
1384/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1385/// this is not UB:
1386///
1387/// ```rust,ignore
1388/// let val: Self = unsafe { core::mem::zeroed() };
1389/// ```
1390pub unsafe trait Zeroable {}
1391
1392/// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write
1393/// `None` to that location.
1394///
1395/// # Safety
1396///
1397/// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound.
1398pub unsafe trait ZeroableOption {}
1399
1400// SAFETY: by the safety requirement of `ZeroableOption`, this is valid.
1401unsafe impl<T: ZeroableOption> Zeroable for Option<T> {}
1402
1403/// Create a new zeroed T.
1404///
1405/// The returned initializer will write `0x00` to every byte of the given `slot`.
1406#[inline]
1407pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1408 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1409 // and because we write all zeroes, the memory is initialized.
1410 unsafe {
1411 init_from_closure(|slot: *mut T| {
1412 slot.write_bytes(0, 1);
1413 Ok(())
1414 })
1415 }
1416}
1417
1418macro_rules! impl_zeroable {
1419 ($($({$($generics:tt)*})? $t:ty, )*) => {
1420 // SAFETY: Safety comments written in the macro invocation.
1421 $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1422 };
1423}
1424
1425impl_zeroable! {
1426 // SAFETY: All primitives that are allowed to be zero.
1427 bool,
1428 char,
1429 u8, u16, u32, u64, u128, usize,
1430 i8, i16, i32, i64, i128, isize,
1431 f32, f64,
1432
1433 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1434 // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1435 // uninhabited/empty types, consult The Rustonomicon:
1436 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1437 // also has information on undefined behavior:
1438 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1439 //
1440 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1441 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1442
1443 // SAFETY: Type is allowed to take any value, including all zeros.
1444 {<T>} MaybeUninit<T>,
1445
1446 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1447 {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1448
1449 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
1450 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>).
1451 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1452 Option<NonZeroU128>, Option<NonZeroUsize>,
1453 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1454 Option<NonZeroI128>, Option<NonZeroIsize>,
1455 {<T>} Option<NonNull<T>>,
1456
1457 // SAFETY: `null` pointer is valid.
1458 //
1459 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1460 // null.
1461 //
1462 // When `Pointee` gets stabilized, we could use
1463 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1464 {<T>} *mut T, {<T>} *const T,
1465
1466 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1467 // zero.
1468 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1469
1470 // SAFETY: `T` is `Zeroable`.
1471 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1472}
1473
1474macro_rules! impl_tuple_zeroable {
1475 ($(,)?) => {};
1476 ($first:ident, $($t:ident),* $(,)?) => {
1477 // SAFETY: All elements are zeroable and padding can be zero.
1478 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1479 impl_tuple_zeroable!($($t),* ,);
1480 }
1481}
1482
1483impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);