kernel/
task.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Tasks (threads and processes).
4//!
5//! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6
7use crate::{
8    bindings,
9    ffi::{c_int, c_long, c_uint},
10    mm::MmWithUser,
11    pid_namespace::PidNamespace,
12    types::{ARef, NotThreadSafe, Opaque},
13};
14use core::{
15    cmp::{Eq, PartialEq},
16    ops::Deref,
17    ptr,
18};
19
20/// A sentinel value used for infinite timeouts.
21pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
22
23/// Bitmask for tasks that are sleeping in an interruptible state.
24pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
25/// Bitmask for tasks that are sleeping in an uninterruptible state.
26pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
27/// Bitmask for tasks that are sleeping in a freezable state.
28pub const TASK_FREEZABLE: c_int = bindings::TASK_FREEZABLE as c_int;
29/// Convenience constant for waking up tasks regardless of whether they are in interruptible or
30/// uninterruptible sleep.
31pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
32
33/// Returns the currently running task.
34#[macro_export]
35macro_rules! current {
36    () => {
37        // SAFETY: This expression creates a temporary value that is dropped at the end of the
38        // caller's scope. The following mechanisms ensure that the resulting `&CurrentTask` cannot
39        // leave current task context:
40        //
41        // * To return to userspace, the caller must leave the current scope.
42        // * Operations such as `begin_new_exec()` are necessarily unsafe and the caller of
43        //   `begin_new_exec()` is responsible for safety.
44        // * Rust abstractions for things such as a `kthread_use_mm()` scope must require the
45        //   closure to be `Send`, so the `NotThreadSafe` field of `CurrentTask` ensures that the
46        //   `&CurrentTask` cannot cross the scope in either direction.
47        unsafe { &*$crate::task::Task::current() }
48    };
49}
50
51/// Wraps the kernel's `struct task_struct`.
52///
53/// # Invariants
54///
55/// All instances are valid tasks created by the C portion of the kernel.
56///
57/// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
58/// that the allocation remains valid at least until the matching call to `put_task_struct`.
59///
60/// # Examples
61///
62/// The following is an example of getting the PID of the current thread with zero additional cost
63/// when compared to the C version:
64///
65/// ```
66/// let pid = current!().pid();
67/// ```
68///
69/// Getting the PID of the current process, also zero additional cost:
70///
71/// ```
72/// let pid = current!().group_leader().pid();
73/// ```
74///
75/// Getting the current task and storing it in some struct. The reference count is automatically
76/// incremented when creating `State` and decremented when it is dropped:
77///
78/// ```
79/// use kernel::{task::Task, types::ARef};
80///
81/// struct State {
82///     creator: ARef<Task>,
83///     index: u32,
84/// }
85///
86/// impl State {
87///     fn new() -> Self {
88///         Self {
89///             creator: ARef::from(&**current!()),
90///             index: 0,
91///         }
92///     }
93/// }
94/// ```
95#[repr(transparent)]
96pub struct Task(pub(crate) Opaque<bindings::task_struct>);
97
98// SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
99// `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
100// which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
101// runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
102unsafe impl Send for Task {}
103
104// SAFETY: It's OK to access `Task` through shared references from other threads because we're
105// either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
106// synchronised by C code (e.g., `signal_pending`).
107unsafe impl Sync for Task {}
108
109/// Represents the [`Task`] in the `current` global.
110///
111/// This type exists to provide more efficient operations that are only valid on the current task.
112/// For example, to retrieve the pid-namespace of a task, you must use rcu protection unless it is
113/// the current task.
114///
115/// # Invariants
116///
117/// Each value of this type must only be accessed from the task context it was created within.
118///
119/// Of course, every thread is in a different task context, but for the purposes of this invariant,
120/// these operations also permanently leave the task context:
121///
122/// * Returning to userspace from system call context.
123/// * Calling `release_task()`.
124/// * Calling `begin_new_exec()` in a binary format loader.
125///
126/// Other operations temporarily create a new sub-context:
127///
128/// * Calling `kthread_use_mm()` creates a new context, and `kthread_unuse_mm()` returns to the
129///   old context.
130///
131/// This means that a `CurrentTask` obtained before a `kthread_use_mm()` call may be used again
132/// once `kthread_unuse_mm()` is called, but it must not be used between these two calls.
133/// Conversely, a `CurrentTask` obtained between a `kthread_use_mm()`/`kthread_unuse_mm()` pair
134/// must not be used after `kthread_unuse_mm()`.
135#[repr(transparent)]
136pub struct CurrentTask(Task, NotThreadSafe);
137
138// Make all `Task` methods available on `CurrentTask`.
139impl Deref for CurrentTask {
140    type Target = Task;
141    #[inline]
142    fn deref(&self) -> &Task {
143        &self.0
144    }
145}
146
147/// The type of process identifiers (PIDs).
148pub type Pid = bindings::pid_t;
149
150/// The type of user identifiers (UIDs).
151#[derive(Copy, Clone)]
152pub struct Kuid {
153    kuid: bindings::kuid_t,
154}
155
156impl Task {
157    /// Returns a raw pointer to the current task.
158    ///
159    /// It is up to the user to use the pointer correctly.
160    #[inline]
161    pub fn current_raw() -> *mut bindings::task_struct {
162        // SAFETY: Getting the current pointer is always safe.
163        unsafe { bindings::get_current() }
164    }
165
166    /// Returns a task reference for the currently executing task/thread.
167    ///
168    /// The recommended way to get the current task/thread is to use the
169    /// [`current`] macro because it is safe.
170    ///
171    /// # Safety
172    ///
173    /// Callers must ensure that the returned object is only used to access a [`CurrentTask`]
174    /// within the task context that was active when this function was called. For more details,
175    /// see the invariants section for [`CurrentTask`].
176    pub unsafe fn current() -> impl Deref<Target = CurrentTask> {
177        struct TaskRef {
178            task: *const CurrentTask,
179        }
180
181        impl Deref for TaskRef {
182            type Target = CurrentTask;
183
184            fn deref(&self) -> &Self::Target {
185                // SAFETY: The returned reference borrows from this `TaskRef`, so it cannot outlive
186                // the `TaskRef`, which the caller of `Task::current()` has promised will not
187                // outlive the task/thread for which `self.task` is the `current` pointer. Thus, it
188                // is okay to return a `CurrentTask` reference here.
189                unsafe { &*self.task }
190            }
191        }
192
193        TaskRef {
194            // CAST: The layout of `struct task_struct` and `CurrentTask` is identical.
195            task: Task::current_raw().cast(),
196        }
197    }
198
199    /// Returns a raw pointer to the task.
200    #[inline]
201    pub fn as_ptr(&self) -> *mut bindings::task_struct {
202        self.0.get()
203    }
204
205    /// Returns the group leader of the given task.
206    pub fn group_leader(&self) -> &Task {
207        // SAFETY: The group leader of a task never changes after initialization, so reading this
208        // field is not a data race.
209        let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
210
211        // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
212        // and given that a task has a reference to its group leader, we know it must be valid for
213        // the lifetime of the returned task reference.
214        unsafe { &*ptr.cast() }
215    }
216
217    /// Returns the PID of the given task.
218    pub fn pid(&self) -> Pid {
219        // SAFETY: The pid of a task never changes after initialization, so reading this field is
220        // not a data race.
221        unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
222    }
223
224    /// Returns the UID of the given task.
225    pub fn uid(&self) -> Kuid {
226        // SAFETY: It's always safe to call `task_uid` on a valid task.
227        Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
228    }
229
230    /// Returns the effective UID of the given task.
231    pub fn euid(&self) -> Kuid {
232        // SAFETY: It's always safe to call `task_euid` on a valid task.
233        Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
234    }
235
236    /// Determines whether the given task has pending signals.
237    pub fn signal_pending(&self) -> bool {
238        // SAFETY: It's always safe to call `signal_pending` on a valid task.
239        unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
240    }
241
242    /// Returns task's pid namespace with elevated reference count
243    pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
244        // SAFETY: By the type invariant, we know that `self.0` is valid.
245        let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
246        if ptr.is_null() {
247            None
248        } else {
249            // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
250            // reference count via `task_get_pid_ns()`.
251            // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
252            Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
253        }
254    }
255
256    /// Returns the given task's pid in the provided pid namespace.
257    #[doc(alias = "task_tgid_nr_ns")]
258    pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
259        let pidns = match pidns {
260            Some(pidns) => pidns.as_ptr(),
261            None => core::ptr::null_mut(),
262        };
263        // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
264        // PidNamespace that we can use as a pointer or we received an empty PidNamespace and
265        // thus pass a null pointer. The underlying C function is safe to be used with NULL
266        // pointers.
267        unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
268    }
269
270    /// Wakes up the task.
271    pub fn wake_up(&self) {
272        // SAFETY: It's always safe to call `wake_up_process` on a valid task, even if the task
273        // running.
274        unsafe { bindings::wake_up_process(self.as_ptr()) };
275    }
276}
277
278impl CurrentTask {
279    /// Access the address space of the current task.
280    ///
281    /// This function does not touch the refcount of the mm.
282    #[inline]
283    pub fn mm(&self) -> Option<&MmWithUser> {
284        // SAFETY: The `mm` field of `current` is not modified from other threads, so reading it is
285        // not a data race.
286        let mm = unsafe { (*self.as_ptr()).mm };
287
288        if mm.is_null() {
289            return None;
290        }
291
292        // SAFETY: If `current->mm` is non-null, then it references a valid mm with a non-zero
293        // value of `mm_users`. Furthermore, the returned `&MmWithUser` borrows from this
294        // `CurrentTask`, so it cannot escape the scope in which the current pointer was obtained.
295        //
296        // This is safe even if `kthread_use_mm()`/`kthread_unuse_mm()` are used. There are two
297        // relevant cases:
298        // * If the `&CurrentTask` was created before `kthread_use_mm()`, then it cannot be
299        //   accessed during the `kthread_use_mm()`/`kthread_unuse_mm()` scope due to the
300        //   `NotThreadSafe` field of `CurrentTask`.
301        // * If the `&CurrentTask` was created within a `kthread_use_mm()`/`kthread_unuse_mm()`
302        //   scope, then the `&CurrentTask` cannot escape that scope, so the returned `&MmWithUser`
303        //   also cannot escape that scope.
304        // In either case, it's not possible to read `current->mm` and keep using it after the
305        // scope is ended with `kthread_unuse_mm()`.
306        Some(unsafe { MmWithUser::from_raw(mm) })
307    }
308
309    /// Access the pid namespace of the current task.
310    ///
311    /// This function does not touch the refcount of the namespace or use RCU protection.
312    ///
313    /// To access the pid namespace of another task, see [`Task::get_pid_ns`].
314    #[doc(alias = "task_active_pid_ns")]
315    #[inline]
316    pub fn active_pid_ns(&self) -> Option<&PidNamespace> {
317        // SAFETY: It is safe to call `task_active_pid_ns` without RCU protection when calling it
318        // on the current task.
319        let active_ns = unsafe { bindings::task_active_pid_ns(self.as_ptr()) };
320
321        if active_ns.is_null() {
322            return None;
323        }
324
325        // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
326        //
327        // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive.
328        //
329        // From system call context retrieving the `PidNamespace` for the current task is always
330        // safe and requires neither RCU locking nor a reference count to be held. Retrieving the
331        // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
332        // like that is exposed to Rust.
333        //
334        // SAFETY: If `current`'s pid ns is non-null, then it references a valid pid ns.
335        // Furthermore, the returned `&PidNamespace` borrows from this `CurrentTask`, so it cannot
336        // escape the scope in which the current pointer was obtained, e.g. it cannot live past a
337        // `release_task()` call.
338        Some(unsafe { PidNamespace::from_ptr(active_ns) })
339    }
340}
341
342// SAFETY: The type invariants guarantee that `Task` is always refcounted.
343unsafe impl crate::types::AlwaysRefCounted for Task {
344    fn inc_ref(&self) {
345        // SAFETY: The existence of a shared reference means that the refcount is nonzero.
346        unsafe { bindings::get_task_struct(self.as_ptr()) };
347    }
348
349    unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
350        // SAFETY: The safety requirements guarantee that the refcount is nonzero.
351        unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
352    }
353}
354
355impl Kuid {
356    /// Get the current euid.
357    #[inline]
358    pub fn current_euid() -> Kuid {
359        // SAFETY: Just an FFI call.
360        Self::from_raw(unsafe { bindings::current_euid() })
361    }
362
363    /// Create a `Kuid` given the raw C type.
364    #[inline]
365    pub fn from_raw(kuid: bindings::kuid_t) -> Self {
366        Self { kuid }
367    }
368
369    /// Turn this kuid into the raw C type.
370    #[inline]
371    pub fn into_raw(self) -> bindings::kuid_t {
372        self.kuid
373    }
374
375    /// Converts this kernel UID into a userspace UID.
376    ///
377    /// Uses the namespace of the current task.
378    #[inline]
379    pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
380        // SAFETY: Just an FFI call.
381        unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
382    }
383}
384
385impl PartialEq for Kuid {
386    #[inline]
387    fn eq(&self, other: &Kuid) -> bool {
388        // SAFETY: Just an FFI call.
389        unsafe { bindings::uid_eq(self.kuid, other.kuid) }
390    }
391}
392
393impl Eq for Kuid {}