kernel/sync/arc.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! A reference-counted pointer.
4//!
5//! This module implements a way for users to create reference-counted objects and pointers to
6//! them. Such a pointer automatically increments and decrements the count, and drops the
7//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8//! threads.
9//!
10//! It is different from the standard library's [`Arc`] in a few ways:
11//! 1. It is backed by the kernel's `refcount_t` type.
12//! 2. It does not support weak references, which allows it to be half the size.
13//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15//! 5. The object in [`Arc`] is pinned implicitly.
16//!
17//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18
19use crate::{
20 alloc::{AllocError, Flags, KBox},
21 bindings,
22 init::InPlaceInit,
23 try_init,
24 types::{ForeignOwnable, Opaque},
25};
26use core::{
27 alloc::Layout,
28 fmt,
29 marker::PhantomData,
30 mem::{ManuallyDrop, MaybeUninit},
31 ops::{Deref, DerefMut},
32 pin::Pin,
33 ptr::NonNull,
34};
35use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
36
37mod std_vendor;
38
39/// A reference-counted pointer to an instance of `T`.
40///
41/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43///
44/// # Invariants
45///
46/// The reference count on an instance of [`Arc`] is always non-zero.
47/// The object pointed to by [`Arc`] is always pinned.
48///
49/// # Examples
50///
51/// ```
52/// use kernel::sync::Arc;
53///
54/// struct Example {
55/// a: u32,
56/// b: u32,
57/// }
58///
59/// // Create a refcounted instance of `Example`.
60/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61///
62/// // Get a new pointer to `obj` and increment the refcount.
63/// let cloned = obj.clone();
64///
65/// // Assert that both `obj` and `cloned` point to the same underlying object.
66/// assert!(core::ptr::eq(&*obj, &*cloned));
67///
68/// // Destroy `obj` and decrement its refcount.
69/// drop(obj);
70///
71/// // Check that the values are still accessible through `cloned`.
72/// assert_eq!(cloned.a, 10);
73/// assert_eq!(cloned.b, 20);
74///
75/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76/// # Ok::<(), Error>(())
77/// ```
78///
79/// Using `Arc<T>` as the type of `self`:
80///
81/// ```
82/// use kernel::sync::Arc;
83///
84/// struct Example {
85/// a: u32,
86/// b: u32,
87/// }
88///
89/// impl Example {
90/// fn take_over(self: Arc<Self>) {
91/// // ...
92/// }
93///
94/// fn use_reference(self: &Arc<Self>) {
95/// // ...
96/// }
97/// }
98///
99/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100/// obj.use_reference();
101/// obj.take_over();
102/// # Ok::<(), Error>(())
103/// ```
104///
105/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106///
107/// ```
108/// use kernel::sync::{Arc, ArcBorrow};
109///
110/// trait MyTrait {
111/// // Trait has a function whose `self` type is `Arc<Self>`.
112/// fn example1(self: Arc<Self>) {}
113///
114/// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115/// fn example2(self: ArcBorrow<'_, Self>) {}
116/// }
117///
118/// struct Example;
119/// impl MyTrait for Example {}
120///
121/// // `obj` has type `Arc<Example>`.
122/// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123///
124/// // `coerced` has type `Arc<dyn MyTrait>`.
125/// let coerced: Arc<dyn MyTrait> = obj;
126/// # Ok::<(), Error>(())
127/// ```
128#[repr(transparent)]
129#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
130pub struct Arc<T: ?Sized> {
131 ptr: NonNull<ArcInner<T>>,
132 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
133 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
134 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
135 // meaningful with respect to dropck - but this may change in the future so this is left here
136 // out of an abundance of caution.
137 //
138 // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking
139 // for more detail on the semantics of dropck in the presence of `PhantomData`.
140 _p: PhantomData<ArcInner<T>>,
141}
142
143#[pin_data]
144#[repr(C)]
145struct ArcInner<T: ?Sized> {
146 refcount: Opaque<bindings::refcount_t>,
147 data: T,
148}
149
150impl<T: ?Sized> ArcInner<T> {
151 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
152 ///
153 /// # Safety
154 ///
155 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
156 /// not yet have been destroyed.
157 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
158 let refcount_layout = Layout::new::<bindings::refcount_t>();
159 // SAFETY: The caller guarantees that the pointer is valid.
160 let val_layout = Layout::for_value(unsafe { &*ptr });
161 // SAFETY: We're computing the layout of a real struct that existed when compiling this
162 // binary, so its layout is not so large that it can trigger arithmetic overflow.
163 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
164
165 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
166 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
167 //
168 // This is documented at:
169 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
170 let ptr = ptr as *const ArcInner<T>;
171
172 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
173 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
174 // still valid.
175 let ptr = unsafe { ptr.byte_sub(val_offset) };
176
177 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
178 // address.
179 unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
180 }
181}
182
183// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
184// dynamically-sized type (DST) `U`.
185#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
186impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
187
188// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
189#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
190impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
191
192// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
193// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
194// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
195// mutable reference when the reference count reaches zero and `T` is dropped.
196unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
197
198// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
199// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
200// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
201// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
202// the reference count reaches zero and `T` is dropped.
203unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
204
205impl<T> InPlaceInit<T> for Arc<T> {
206 type PinnedSelf = Self;
207
208 #[inline]
209 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
210 where
211 E: From<AllocError>,
212 {
213 UniqueArc::try_pin_init(init, flags).map(|u| u.into())
214 }
215
216 #[inline]
217 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
218 where
219 E: From<AllocError>,
220 {
221 UniqueArc::try_init(init, flags).map(|u| u.into())
222 }
223}
224
225impl<T> Arc<T> {
226 /// Constructs a new reference counted instance of `T`.
227 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
228 // INVARIANT: The refcount is initialised to a non-zero value.
229 let value = ArcInner {
230 // SAFETY: There are no safety requirements for this FFI call.
231 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
232 data: contents,
233 };
234
235 let inner = KBox::new(value, flags)?;
236 let inner = KBox::leak(inner).into();
237
238 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
239 // `Arc` object.
240 Ok(unsafe { Self::from_inner(inner) })
241 }
242}
243
244impl<T: ?Sized> Arc<T> {
245 /// Constructs a new [`Arc`] from an existing [`ArcInner`].
246 ///
247 /// # Safety
248 ///
249 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
250 /// count, one of which will be owned by the new [`Arc`] instance.
251 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
252 // INVARIANT: By the safety requirements, the invariants hold.
253 Arc {
254 ptr: inner,
255 _p: PhantomData,
256 }
257 }
258
259 /// Convert the [`Arc`] into a raw pointer.
260 ///
261 /// The raw pointer has ownership of the refcount that this Arc object owned.
262 pub fn into_raw(self) -> *const T {
263 let ptr = self.ptr.as_ptr();
264 core::mem::forget(self);
265 // SAFETY: The pointer is valid.
266 unsafe { core::ptr::addr_of!((*ptr).data) }
267 }
268
269 /// Return a raw pointer to the data in this arc.
270 pub fn as_ptr(this: &Self) -> *const T {
271 let ptr = this.ptr.as_ptr();
272
273 // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
274 // field projection to `data`is within bounds of the allocation.
275 unsafe { core::ptr::addr_of!((*ptr).data) }
276 }
277
278 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
279 ///
280 /// # Safety
281 ///
282 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
283 /// must not be called more than once for each previous call to [`Arc::into_raw`].
284 pub unsafe fn from_raw(ptr: *const T) -> Self {
285 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
286 // `Arc` that is still valid.
287 let ptr = unsafe { ArcInner::container_of(ptr) };
288
289 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
290 // reference count held then will be owned by the new `Arc` object.
291 unsafe { Self::from_inner(ptr) }
292 }
293
294 /// Returns an [`ArcBorrow`] from the given [`Arc`].
295 ///
296 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
297 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
298 #[inline]
299 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
300 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
301 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
302 // reference can be created.
303 unsafe { ArcBorrow::new(self.ptr) }
304 }
305
306 /// Compare whether two [`Arc`] pointers reference the same underlying object.
307 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
308 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
309 }
310
311 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
312 ///
313 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
314 /// this method will never call the destructor of the value.
315 ///
316 /// # Examples
317 ///
318 /// ```
319 /// use kernel::sync::{Arc, UniqueArc};
320 ///
321 /// let arc = Arc::new(42, GFP_KERNEL)?;
322 /// let unique_arc = arc.into_unique_or_drop();
323 ///
324 /// // The above conversion should succeed since refcount of `arc` is 1.
325 /// assert!(unique_arc.is_some());
326 ///
327 /// assert_eq!(*(unique_arc.unwrap()), 42);
328 ///
329 /// # Ok::<(), Error>(())
330 /// ```
331 ///
332 /// ```
333 /// use kernel::sync::{Arc, UniqueArc};
334 ///
335 /// let arc = Arc::new(42, GFP_KERNEL)?;
336 /// let another = arc.clone();
337 ///
338 /// let unique_arc = arc.into_unique_or_drop();
339 ///
340 /// // The above conversion should fail since refcount of `arc` is >1.
341 /// assert!(unique_arc.is_none());
342 ///
343 /// # Ok::<(), Error>(())
344 /// ```
345 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
346 // We will manually manage the refcount in this method, so we disable the destructor.
347 let me = ManuallyDrop::new(self);
348 // SAFETY: We own a refcount, so the pointer is still valid.
349 let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
350
351 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
352 // return without further touching the `Arc`. If the refcount reaches zero, then there are
353 // no other arcs, and we can create a `UniqueArc`.
354 //
355 // SAFETY: We own a refcount, so the pointer is not dangling.
356 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
357 if is_zero {
358 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
359 // accesses to the refcount.
360 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
361
362 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
363 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
364 // their values.
365 Some(Pin::from(UniqueArc {
366 inner: ManuallyDrop::into_inner(me),
367 }))
368 } else {
369 None
370 }
371 }
372}
373
374impl<T: 'static> ForeignOwnable for Arc<T> {
375 type Borrowed<'a> = ArcBorrow<'a, T>;
376 type BorrowedMut<'a> = Self::Borrowed<'a>;
377
378 fn into_foreign(self) -> *mut crate::ffi::c_void {
379 ManuallyDrop::new(self).ptr.as_ptr().cast()
380 }
381
382 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self {
383 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
384 // call to `Self::into_foreign`.
385 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
386
387 // SAFETY: By the safety requirement of this function, we know that `ptr` came from
388 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
389 // holds a reference count increment that is transferrable to us.
390 unsafe { Self::from_inner(inner) }
391 }
392
393 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> {
394 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
395 // call to `Self::into_foreign`.
396 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
397
398 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
399 // for the lifetime of the returned value.
400 unsafe { ArcBorrow::new(inner) }
401 }
402
403 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> {
404 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
405 // requirements for `borrow`.
406 unsafe { Self::borrow(ptr) }
407 }
408}
409
410impl<T: ?Sized> Deref for Arc<T> {
411 type Target = T;
412
413 fn deref(&self) -> &Self::Target {
414 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
415 // safe to dereference it.
416 unsafe { &self.ptr.as_ref().data }
417 }
418}
419
420impl<T: ?Sized> AsRef<T> for Arc<T> {
421 fn as_ref(&self) -> &T {
422 self.deref()
423 }
424}
425
426impl<T: ?Sized> Clone for Arc<T> {
427 fn clone(&self) -> Self {
428 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
429 // safe to dereference it.
430 let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
431
432 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
433 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
434 // safe to increment the refcount.
435 unsafe { bindings::refcount_inc(refcount) };
436
437 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
438 unsafe { Self::from_inner(self.ptr) }
439 }
440}
441
442impl<T: ?Sized> Drop for Arc<T> {
443 fn drop(&mut self) {
444 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
445 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
446 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
447 // freed/invalid memory as long as it is never dereferenced.
448 let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
449
450 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
451 // this instance is being dropped, so the broken invariant is not observable.
452 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
453 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
454 if is_zero {
455 // The count reached zero, we must free the memory.
456 //
457 // SAFETY: The pointer was initialised from the result of `KBox::leak`.
458 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
459 }
460 }
461}
462
463impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
464 fn from(item: UniqueArc<T>) -> Self {
465 item.inner
466 }
467}
468
469impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
470 fn from(item: Pin<UniqueArc<T>>) -> Self {
471 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
472 unsafe { Pin::into_inner_unchecked(item).inner }
473 }
474}
475
476/// A borrowed reference to an [`Arc`] instance.
477///
478/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
479/// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
480///
481/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
482/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
483/// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
484/// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
485/// needed.
486///
487/// # Invariants
488///
489/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
490/// lifetime of the [`ArcBorrow`] instance.
491///
492/// # Example
493///
494/// ```
495/// use kernel::sync::{Arc, ArcBorrow};
496///
497/// struct Example;
498///
499/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
500/// e.into()
501/// }
502///
503/// let obj = Arc::new(Example, GFP_KERNEL)?;
504/// let cloned = do_something(obj.as_arc_borrow());
505///
506/// // Assert that both `obj` and `cloned` point to the same underlying object.
507/// assert!(core::ptr::eq(&*obj, &*cloned));
508/// # Ok::<(), Error>(())
509/// ```
510///
511/// Using `ArcBorrow<T>` as the type of `self`:
512///
513/// ```
514/// use kernel::sync::{Arc, ArcBorrow};
515///
516/// struct Example {
517/// a: u32,
518/// b: u32,
519/// }
520///
521/// impl Example {
522/// fn use_reference(self: ArcBorrow<'_, Self>) {
523/// // ...
524/// }
525/// }
526///
527/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
528/// obj.as_arc_borrow().use_reference();
529/// # Ok::<(), Error>(())
530/// ```
531#[repr(transparent)]
532#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
533pub struct ArcBorrow<'a, T: ?Sized + 'a> {
534 inner: NonNull<ArcInner<T>>,
535 _p: PhantomData<&'a ()>,
536}
537
538// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
539// `ArcBorrow<U>`.
540#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
541impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
542 for ArcBorrow<'_, T>
543{
544}
545
546impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
547 fn clone(&self) -> Self {
548 *self
549 }
550}
551
552impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
553
554impl<T: ?Sized> ArcBorrow<'_, T> {
555 /// Creates a new [`ArcBorrow`] instance.
556 ///
557 /// # Safety
558 ///
559 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
560 /// 1. That `inner` remains valid;
561 /// 2. That no mutable references to `inner` are created.
562 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
563 // INVARIANT: The safety requirements guarantee the invariants.
564 Self {
565 inner,
566 _p: PhantomData,
567 }
568 }
569
570 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
571 /// [`Arc::into_raw`] or [`Arc::as_ptr`].
572 ///
573 /// # Safety
574 ///
575 /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
576 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
577 /// not hit zero.
578 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
579 /// [`UniqueArc`] reference to this value.
580 pub unsafe fn from_raw(ptr: *const T) -> Self {
581 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
582 // `Arc` that is still valid.
583 let ptr = unsafe { ArcInner::container_of(ptr) };
584
585 // SAFETY: The caller promises that the value remains valid since the reference count must
586 // not hit zero, and no mutable reference will be created since that would involve a
587 // `UniqueArc`.
588 unsafe { Self::new(ptr) }
589 }
590}
591
592impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
593 fn from(b: ArcBorrow<'_, T>) -> Self {
594 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
595 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
596 // increment.
597 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
598 .deref()
599 .clone()
600 }
601}
602
603impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
604 type Target = T;
605
606 fn deref(&self) -> &Self::Target {
607 // SAFETY: By the type invariant, the underlying object is still alive with no mutable
608 // references to it, so it is safe to create a shared reference.
609 unsafe { &self.inner.as_ref().data }
610 }
611}
612
613/// A refcounted object that is known to have a refcount of 1.
614///
615/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
616///
617/// # Invariants
618///
619/// `inner` always has a reference count of 1.
620///
621/// # Examples
622///
623/// In the following example, we make changes to the inner object before turning it into an
624/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
625/// cannot fail.
626///
627/// ```
628/// use kernel::sync::{Arc, UniqueArc};
629///
630/// struct Example {
631/// a: u32,
632/// b: u32,
633/// }
634///
635/// fn test() -> Result<Arc<Example>> {
636/// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
637/// x.a += 1;
638/// x.b += 1;
639/// Ok(x.into())
640/// }
641///
642/// # test().unwrap();
643/// ```
644///
645/// In the following example we first allocate memory for a refcounted `Example` but we don't
646/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
647/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
648/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
649///
650/// ```
651/// use kernel::sync::{Arc, UniqueArc};
652///
653/// struct Example {
654/// a: u32,
655/// b: u32,
656/// }
657///
658/// fn test() -> Result<Arc<Example>> {
659/// let x = UniqueArc::new_uninit(GFP_KERNEL)?;
660/// Ok(x.write(Example { a: 10, b: 20 }).into())
661/// }
662///
663/// # test().unwrap();
664/// ```
665///
666/// In the last example below, the caller gets a pinned instance of `Example` while converting to
667/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
668/// initialisation, for example, when initialising fields that are wrapped in locks.
669///
670/// ```
671/// use kernel::sync::{Arc, UniqueArc};
672///
673/// struct Example {
674/// a: u32,
675/// b: u32,
676/// }
677///
678/// fn test() -> Result<Arc<Example>> {
679/// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
680/// // We can modify `pinned` because it is `Unpin`.
681/// pinned.as_mut().a += 1;
682/// Ok(pinned.into())
683/// }
684///
685/// # test().unwrap();
686/// ```
687pub struct UniqueArc<T: ?Sized> {
688 inner: Arc<T>,
689}
690
691impl<T> InPlaceInit<T> for UniqueArc<T> {
692 type PinnedSelf = Pin<Self>;
693
694 #[inline]
695 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
696 where
697 E: From<AllocError>,
698 {
699 UniqueArc::new_uninit(flags)?.write_pin_init(init)
700 }
701
702 #[inline]
703 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
704 where
705 E: From<AllocError>,
706 {
707 UniqueArc::new_uninit(flags)?.write_init(init)
708 }
709}
710
711impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
712 type Initialized = UniqueArc<T>;
713
714 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
715 let slot = self.as_mut_ptr();
716 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
717 // slot is valid.
718 unsafe { init.__init(slot)? };
719 // SAFETY: All fields have been initialized.
720 Ok(unsafe { self.assume_init() })
721 }
722
723 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
724 let slot = self.as_mut_ptr();
725 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
726 // slot is valid and will not be moved, because we pin it later.
727 unsafe { init.__pinned_init(slot)? };
728 // SAFETY: All fields have been initialized.
729 Ok(unsafe { self.assume_init() }.into())
730 }
731}
732
733impl<T> UniqueArc<T> {
734 /// Tries to allocate a new [`UniqueArc`] instance.
735 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
736 Ok(Self {
737 // INVARIANT: The newly-created object has a refcount of 1.
738 inner: Arc::new(value, flags)?,
739 })
740 }
741
742 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
743 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
744 // INVARIANT: The refcount is initialised to a non-zero value.
745 let inner = KBox::try_init::<AllocError>(
746 try_init!(ArcInner {
747 // SAFETY: There are no safety requirements for this FFI call.
748 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
749 data <- pin_init::uninit::<T, AllocError>(),
750 }? AllocError),
751 flags,
752 )?;
753 Ok(UniqueArc {
754 // INVARIANT: The newly-created object has a refcount of 1.
755 // SAFETY: The pointer from the `KBox` is valid.
756 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
757 })
758 }
759}
760
761impl<T> UniqueArc<MaybeUninit<T>> {
762 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
763 pub fn write(mut self, value: T) -> UniqueArc<T> {
764 self.deref_mut().write(value);
765 // SAFETY: We just wrote the value to be initialized.
766 unsafe { self.assume_init() }
767 }
768
769 /// Unsafely assume that `self` is initialized.
770 ///
771 /// # Safety
772 ///
773 /// The caller guarantees that the value behind this pointer has been initialized. It is
774 /// *immediate* UB to call this when the value is not initialized.
775 pub unsafe fn assume_init(self) -> UniqueArc<T> {
776 let inner = ManuallyDrop::new(self).inner.ptr;
777 UniqueArc {
778 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
779 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
780 inner: unsafe { Arc::from_inner(inner.cast()) },
781 }
782 }
783
784 /// Initialize `self` using the given initializer.
785 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
786 // SAFETY: The supplied pointer is valid for initialization.
787 match unsafe { init.__init(self.as_mut_ptr()) } {
788 // SAFETY: Initialization completed successfully.
789 Ok(()) => Ok(unsafe { self.assume_init() }),
790 Err(err) => Err(err),
791 }
792 }
793
794 /// Pin-initialize `self` using the given pin-initializer.
795 pub fn pin_init_with<E>(
796 mut self,
797 init: impl PinInit<T, E>,
798 ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
799 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
800 // to ensure it does not move.
801 match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
802 // SAFETY: Initialization completed successfully.
803 Ok(()) => Ok(unsafe { self.assume_init() }.into()),
804 Err(err) => Err(err),
805 }
806 }
807}
808
809impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
810 fn from(obj: UniqueArc<T>) -> Self {
811 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
812 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
813 unsafe { Pin::new_unchecked(obj) }
814 }
815}
816
817impl<T: ?Sized> Deref for UniqueArc<T> {
818 type Target = T;
819
820 fn deref(&self) -> &Self::Target {
821 self.inner.deref()
822 }
823}
824
825impl<T: ?Sized> DerefMut for UniqueArc<T> {
826 fn deref_mut(&mut self) -> &mut Self::Target {
827 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
828 // it is safe to dereference it. Additionally, we know there is only one reference when
829 // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
830 unsafe { &mut self.inner.ptr.as_mut().data }
831 }
832}
833
834impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
835 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
836 fmt::Display::fmt(self.deref(), f)
837 }
838}
839
840impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
841 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
842 fmt::Display::fmt(self.deref(), f)
843 }
844}
845
846impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
847 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
848 fmt::Debug::fmt(self.deref(), f)
849 }
850}
851
852impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
853 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
854 fmt::Debug::fmt(self.deref(), f)
855 }
856}