kernel/sync/arc.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! A reference-counted pointer.
4//!
5//! This module implements a way for users to create reference-counted objects and pointers to
6//! them. Such a pointer automatically increments and decrements the count, and drops the
7//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8//! threads.
9//!
10//! It is different from the standard library's [`Arc`] in a few ways:
11//! 1. It is backed by the kernel's [`Refcount`] type.
12//! 2. It does not support weak references, which allows it to be half the size.
13//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15//! 5. The object in [`Arc`] is pinned implicitly.
16//!
17//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18
19use crate::{
20 alloc::{AllocError, Flags, KBox},
21 ffi::c_void,
22 fmt,
23 init::InPlaceInit,
24 sync::Refcount,
25 try_init,
26 types::ForeignOwnable,
27};
28use core::{
29 alloc::Layout,
30 borrow::{Borrow, BorrowMut},
31 marker::PhantomData,
32 mem::{ManuallyDrop, MaybeUninit},
33 ops::{Deref, DerefMut},
34 pin::Pin,
35 ptr::NonNull,
36};
37use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
38
39mod std_vendor;
40
41/// A reference-counted pointer to an instance of `T`.
42///
43/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
44/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
45///
46/// # Invariants
47///
48/// The reference count on an instance of [`Arc`] is always non-zero.
49/// The object pointed to by [`Arc`] is always pinned.
50///
51/// # Examples
52///
53/// ```
54/// use kernel::sync::Arc;
55///
56/// struct Example {
57/// a: u32,
58/// b: u32,
59/// }
60///
61/// // Create a refcounted instance of `Example`.
62/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
63///
64/// // Get a new pointer to `obj` and increment the refcount.
65/// let cloned = obj.clone();
66///
67/// // Assert that both `obj` and `cloned` point to the same underlying object.
68/// assert!(core::ptr::eq(&*obj, &*cloned));
69///
70/// // Destroy `obj` and decrement its refcount.
71/// drop(obj);
72///
73/// // Check that the values are still accessible through `cloned`.
74/// assert_eq!(cloned.a, 10);
75/// assert_eq!(cloned.b, 20);
76///
77/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
78/// # Ok::<(), Error>(())
79/// ```
80///
81/// Using `Arc<T>` as the type of `self`:
82///
83/// ```
84/// use kernel::sync::Arc;
85///
86/// struct Example {
87/// a: u32,
88/// b: u32,
89/// }
90///
91/// impl Example {
92/// fn take_over(self: Arc<Self>) {
93/// // ...
94/// }
95///
96/// fn use_reference(self: &Arc<Self>) {
97/// // ...
98/// }
99/// }
100///
101/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
102/// obj.use_reference();
103/// obj.take_over();
104/// # Ok::<(), Error>(())
105/// ```
106///
107/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
108///
109/// ```
110/// use kernel::sync::{Arc, ArcBorrow};
111///
112/// trait MyTrait {
113/// // Trait has a function whose `self` type is `Arc<Self>`.
114/// fn example1(self: Arc<Self>) {}
115///
116/// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
117/// fn example2(self: ArcBorrow<'_, Self>) {}
118/// }
119///
120/// struct Example;
121/// impl MyTrait for Example {}
122///
123/// // `obj` has type `Arc<Example>`.
124/// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
125///
126/// // `coerced` has type `Arc<dyn MyTrait>`.
127/// let coerced: Arc<dyn MyTrait> = obj;
128/// # Ok::<(), Error>(())
129/// ```
130#[repr(transparent)]
131#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
132pub struct Arc<T: ?Sized> {
133 ptr: NonNull<ArcInner<T>>,
134 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
135 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
136 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
137 // meaningful with respect to dropck - but this may change in the future so this is left here
138 // out of an abundance of caution.
139 //
140 // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking>
141 // for more detail on the semantics of dropck in the presence of `PhantomData`.
142 _p: PhantomData<ArcInner<T>>,
143}
144
145#[pin_data]
146#[repr(C)]
147struct ArcInner<T: ?Sized> {
148 refcount: Refcount,
149 data: T,
150}
151
152impl<T: ?Sized> ArcInner<T> {
153 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
154 ///
155 /// # Safety
156 ///
157 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
158 /// not yet have been destroyed.
159 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
160 let refcount_layout = Layout::new::<Refcount>();
161 // SAFETY: The caller guarantees that the pointer is valid.
162 let val_layout = Layout::for_value(unsafe { &*ptr });
163 // SAFETY: We're computing the layout of a real struct that existed when compiling this
164 // binary, so its layout is not so large that it can trigger arithmetic overflow.
165 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
166
167 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
168 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
169 //
170 // This is documented at:
171 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
172 let ptr = ptr as *const ArcInner<T>;
173
174 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
175 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
176 // still valid.
177 let ptr = unsafe { ptr.byte_sub(val_offset) };
178
179 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
180 // address.
181 unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
182 }
183}
184
185// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
186// dynamically-sized type (DST) `U`.
187#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
188impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
189
190// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
191#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
192impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
193
194// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
195// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
196// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
197// mutable reference when the reference count reaches zero and `T` is dropped.
198unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
199
200// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
201// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
202// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
203// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
204// the reference count reaches zero and `T` is dropped.
205unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
206
207impl<T> InPlaceInit<T> for Arc<T> {
208 type PinnedSelf = Self;
209
210 #[inline]
211 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
212 where
213 E: From<AllocError>,
214 {
215 UniqueArc::try_pin_init(init, flags).map(|u| u.into())
216 }
217
218 #[inline]
219 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
220 where
221 E: From<AllocError>,
222 {
223 UniqueArc::try_init(init, flags).map(|u| u.into())
224 }
225}
226
227impl<T> Arc<T> {
228 /// Constructs a new reference counted instance of `T`.
229 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
230 // INVARIANT: The refcount is initialised to a non-zero value.
231 let value = ArcInner {
232 refcount: Refcount::new(1),
233 data: contents,
234 };
235
236 let inner = KBox::new(value, flags)?;
237 let inner = KBox::leak(inner).into();
238
239 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
240 // `Arc` object.
241 Ok(unsafe { Self::from_inner(inner) })
242 }
243
244 /// The offset that the value is stored at.
245 pub const DATA_OFFSET: usize = core::mem::offset_of!(ArcInner<T>, data);
246}
247
248impl<T: ?Sized> Arc<T> {
249 /// Constructs a new [`Arc`] from an existing [`ArcInner`].
250 ///
251 /// # Safety
252 ///
253 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
254 /// count, one of which will be owned by the new [`Arc`] instance.
255 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
256 // INVARIANT: By the safety requirements, the invariants hold.
257 Arc {
258 ptr: inner,
259 _p: PhantomData,
260 }
261 }
262
263 /// Convert the [`Arc`] into a raw pointer.
264 ///
265 /// The raw pointer has ownership of the refcount that this Arc object owned.
266 pub fn into_raw(self) -> *const T {
267 let ptr = self.ptr.as_ptr();
268 core::mem::forget(self);
269 // SAFETY: The pointer is valid.
270 unsafe { core::ptr::addr_of!((*ptr).data) }
271 }
272
273 /// Return a raw pointer to the data in this arc.
274 pub fn as_ptr(this: &Self) -> *const T {
275 let ptr = this.ptr.as_ptr();
276
277 // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
278 // field projection to `data`is within bounds of the allocation.
279 unsafe { core::ptr::addr_of!((*ptr).data) }
280 }
281
282 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
283 ///
284 /// # Safety
285 ///
286 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
287 /// must not be called more than once for each previous call to [`Arc::into_raw`].
288 pub unsafe fn from_raw(ptr: *const T) -> Self {
289 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
290 // `Arc` that is still valid.
291 let ptr = unsafe { ArcInner::container_of(ptr) };
292
293 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
294 // reference count held then will be owned by the new `Arc` object.
295 unsafe { Self::from_inner(ptr) }
296 }
297
298 /// Returns an [`ArcBorrow`] from the given [`Arc`].
299 ///
300 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
301 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
302 #[inline]
303 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
304 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
305 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
306 // reference can be created.
307 unsafe { ArcBorrow::new(self.ptr) }
308 }
309
310 /// Compare whether two [`Arc`] pointers reference the same underlying object.
311 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
312 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
313 }
314
315 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
316 ///
317 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
318 /// this method will never call the destructor of the value.
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// use kernel::sync::{Arc, UniqueArc};
324 ///
325 /// let arc = Arc::new(42, GFP_KERNEL)?;
326 /// let unique_arc = Arc::into_unique_or_drop(arc);
327 ///
328 /// // The above conversion should succeed since refcount of `arc` is 1.
329 /// assert!(unique_arc.is_some());
330 ///
331 /// assert_eq!(*(unique_arc.unwrap()), 42);
332 ///
333 /// # Ok::<(), Error>(())
334 /// ```
335 ///
336 /// ```
337 /// use kernel::sync::{Arc, UniqueArc};
338 ///
339 /// let arc = Arc::new(42, GFP_KERNEL)?;
340 /// let another = arc.clone();
341 ///
342 /// let unique_arc = Arc::into_unique_or_drop(arc);
343 ///
344 /// // The above conversion should fail since refcount of `arc` is >1.
345 /// assert!(unique_arc.is_none());
346 ///
347 /// # Ok::<(), Error>(())
348 /// ```
349 pub fn into_unique_or_drop(this: Self) -> Option<Pin<UniqueArc<T>>> {
350 // We will manually manage the refcount in this method, so we disable the destructor.
351 let this = ManuallyDrop::new(this);
352 // SAFETY: We own a refcount, so the pointer is still valid.
353 let refcount = unsafe { &this.ptr.as_ref().refcount };
354
355 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
356 // return without further touching the `Arc`. If the refcount reaches zero, then there are
357 // no other arcs, and we can create a `UniqueArc`.
358 if refcount.dec_and_test() {
359 refcount.set(1);
360
361 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
362 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
363 // their values.
364 Some(Pin::from(UniqueArc {
365 inner: ManuallyDrop::into_inner(this),
366 }))
367 } else {
368 None
369 }
370 }
371}
372
373// SAFETY: The pointer returned by `into_foreign` was originally allocated as an
374// `KBox<ArcInner<T>>`, so that type is what determines the alignment.
375unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
376 const FOREIGN_ALIGN: usize = <KBox<ArcInner<T>> as ForeignOwnable>::FOREIGN_ALIGN;
377
378 type Borrowed<'a> = ArcBorrow<'a, T>;
379 type BorrowedMut<'a> = Self::Borrowed<'a>;
380
381 fn into_foreign(self) -> *mut c_void {
382 ManuallyDrop::new(self).ptr.as_ptr().cast()
383 }
384
385 unsafe fn from_foreign(ptr: *mut c_void) -> Self {
386 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
387 // call to `Self::into_foreign`.
388 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
389
390 // SAFETY: By the safety requirement of this function, we know that `ptr` came from
391 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
392 // holds a reference count increment that is transferrable to us.
393 unsafe { Self::from_inner(inner) }
394 }
395
396 unsafe fn borrow<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
397 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
398 // call to `Self::into_foreign`.
399 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
400
401 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
402 // for the lifetime of the returned value.
403 unsafe { ArcBorrow::new(inner) }
404 }
405
406 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
407 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
408 // requirements for `borrow`.
409 unsafe { <Self as ForeignOwnable>::borrow(ptr) }
410 }
411}
412
413impl<T: ?Sized> Deref for Arc<T> {
414 type Target = T;
415
416 fn deref(&self) -> &Self::Target {
417 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
418 // safe to dereference it.
419 unsafe { &self.ptr.as_ref().data }
420 }
421}
422
423impl<T: ?Sized> AsRef<T> for Arc<T> {
424 fn as_ref(&self) -> &T {
425 self.deref()
426 }
427}
428
429/// # Examples
430///
431/// ```
432/// # use core::borrow::Borrow;
433/// # use kernel::sync::Arc;
434/// struct Foo<B: Borrow<u32>>(B);
435///
436/// // Owned instance.
437/// let owned = Foo(1);
438///
439/// // Shared instance.
440/// let arc = Arc::new(1, GFP_KERNEL)?;
441/// let shared = Foo(arc.clone());
442///
443/// let i = 1;
444/// // Borrowed from `i`.
445/// let borrowed = Foo(&i);
446/// # Ok::<(), Error>(())
447/// ```
448impl<T: ?Sized> Borrow<T> for Arc<T> {
449 fn borrow(&self) -> &T {
450 self.deref()
451 }
452}
453
454impl<T: ?Sized> Clone for Arc<T> {
455 fn clone(&self) -> Self {
456 // INVARIANT: `Refcount` saturates the refcount, so it cannot overflow to zero.
457 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
458 // safe to increment the refcount.
459 unsafe { self.ptr.as_ref() }.refcount.inc();
460
461 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
462 unsafe { Self::from_inner(self.ptr) }
463 }
464}
465
466impl<T: ?Sized> Drop for Arc<T> {
467 fn drop(&mut self) {
468 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
469 // this instance is being dropped, so the broken invariant is not observable.
470 // SAFETY: By the type invariant, there is necessarily a reference to the object.
471 let is_zero = unsafe { self.ptr.as_ref() }.refcount.dec_and_test();
472 if is_zero {
473 // The count reached zero, we must free the memory.
474 //
475 // SAFETY: The pointer was initialised from the result of `KBox::leak`.
476 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
477 }
478 }
479}
480
481impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
482 fn from(item: UniqueArc<T>) -> Self {
483 item.inner
484 }
485}
486
487impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
488 fn from(item: Pin<UniqueArc<T>>) -> Self {
489 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
490 unsafe { Pin::into_inner_unchecked(item).inner }
491 }
492}
493
494/// A borrowed reference to an [`Arc`] instance.
495///
496/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
497/// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
498///
499/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
500/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
501/// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
502/// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
503/// needed.
504///
505/// # Invariants
506///
507/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
508/// lifetime of the [`ArcBorrow`] instance.
509///
510/// # Examples
511///
512/// ```
513/// use kernel::sync::{Arc, ArcBorrow};
514///
515/// struct Example;
516///
517/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
518/// e.into()
519/// }
520///
521/// let obj = Arc::new(Example, GFP_KERNEL)?;
522/// let cloned = do_something(obj.as_arc_borrow());
523///
524/// // Assert that both `obj` and `cloned` point to the same underlying object.
525/// assert!(core::ptr::eq(&*obj, &*cloned));
526/// # Ok::<(), Error>(())
527/// ```
528///
529/// Using `ArcBorrow<T>` as the type of `self`:
530///
531/// ```
532/// use kernel::sync::{Arc, ArcBorrow};
533///
534/// struct Example {
535/// a: u32,
536/// b: u32,
537/// }
538///
539/// impl Example {
540/// fn use_reference(self: ArcBorrow<'_, Self>) {
541/// // ...
542/// }
543/// }
544///
545/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
546/// obj.as_arc_borrow().use_reference();
547/// # Ok::<(), Error>(())
548/// ```
549#[repr(transparent)]
550#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
551pub struct ArcBorrow<'a, T: ?Sized + 'a> {
552 inner: NonNull<ArcInner<T>>,
553 _p: PhantomData<&'a ()>,
554}
555
556// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
557// `ArcBorrow<U>`.
558#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
559impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
560 for ArcBorrow<'_, T>
561{
562}
563
564impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
565 fn clone(&self) -> Self {
566 *self
567 }
568}
569
570impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
571
572impl<T: ?Sized> ArcBorrow<'_, T> {
573 /// Creates a new [`ArcBorrow`] instance.
574 ///
575 /// # Safety
576 ///
577 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
578 /// 1. That `inner` remains valid;
579 /// 2. That no mutable references to `inner` are created.
580 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
581 // INVARIANT: The safety requirements guarantee the invariants.
582 Self {
583 inner,
584 _p: PhantomData,
585 }
586 }
587
588 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
589 /// [`Arc::into_raw`] or [`Arc::as_ptr`].
590 ///
591 /// # Safety
592 ///
593 /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
594 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
595 /// not hit zero.
596 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
597 /// [`UniqueArc`] reference to this value.
598 pub unsafe fn from_raw(ptr: *const T) -> Self {
599 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
600 // `Arc` that is still valid.
601 let ptr = unsafe { ArcInner::container_of(ptr) };
602
603 // SAFETY: The caller promises that the value remains valid since the reference count must
604 // not hit zero, and no mutable reference will be created since that would involve a
605 // `UniqueArc`.
606 unsafe { Self::new(ptr) }
607 }
608}
609
610impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
611 fn from(b: ArcBorrow<'_, T>) -> Self {
612 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
613 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
614 // increment.
615 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
616 .deref()
617 .clone()
618 }
619}
620
621impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
622 type Target = T;
623
624 fn deref(&self) -> &Self::Target {
625 // SAFETY: By the type invariant, the underlying object is still alive with no mutable
626 // references to it, so it is safe to create a shared reference.
627 unsafe { &self.inner.as_ref().data }
628 }
629}
630
631/// A refcounted object that is known to have a refcount of 1.
632///
633/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
634///
635/// # Invariants
636///
637/// `inner` always has a reference count of 1.
638///
639/// # Examples
640///
641/// In the following example, we make changes to the inner object before turning it into an
642/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
643/// cannot fail.
644///
645/// ```
646/// use kernel::sync::{Arc, UniqueArc};
647///
648/// struct Example {
649/// a: u32,
650/// b: u32,
651/// }
652///
653/// fn test() -> Result<Arc<Example>> {
654/// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
655/// x.a += 1;
656/// x.b += 1;
657/// Ok(x.into())
658/// }
659///
660/// # test().unwrap();
661/// ```
662///
663/// In the following example we first allocate memory for a refcounted `Example` but we don't
664/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
665/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
666/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
667///
668/// ```
669/// use kernel::sync::{Arc, UniqueArc};
670///
671/// struct Example {
672/// a: u32,
673/// b: u32,
674/// }
675///
676/// fn test() -> Result<Arc<Example>> {
677/// let x = UniqueArc::new_uninit(GFP_KERNEL)?;
678/// Ok(x.write(Example { a: 10, b: 20 }).into())
679/// }
680///
681/// # test().unwrap();
682/// ```
683///
684/// In the last example below, the caller gets a pinned instance of `Example` while converting to
685/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
686/// initialisation, for example, when initialising fields that are wrapped in locks.
687///
688/// ```
689/// use kernel::sync::{Arc, UniqueArc};
690///
691/// struct Example {
692/// a: u32,
693/// b: u32,
694/// }
695///
696/// fn test() -> Result<Arc<Example>> {
697/// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
698/// // We can modify `pinned` because it is `Unpin`.
699/// pinned.as_mut().a += 1;
700/// Ok(pinned.into())
701/// }
702///
703/// # test().unwrap();
704/// ```
705pub struct UniqueArc<T: ?Sized> {
706 inner: Arc<T>,
707}
708
709impl<T> InPlaceInit<T> for UniqueArc<T> {
710 type PinnedSelf = Pin<Self>;
711
712 #[inline]
713 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
714 where
715 E: From<AllocError>,
716 {
717 UniqueArc::new_uninit(flags)?.write_pin_init(init)
718 }
719
720 #[inline]
721 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
722 where
723 E: From<AllocError>,
724 {
725 UniqueArc::new_uninit(flags)?.write_init(init)
726 }
727}
728
729impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
730 type Initialized = UniqueArc<T>;
731
732 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
733 let slot = self.as_mut_ptr();
734 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
735 // slot is valid.
736 unsafe { init.__init(slot)? };
737 // SAFETY: All fields have been initialized.
738 Ok(unsafe { self.assume_init() })
739 }
740
741 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
742 let slot = self.as_mut_ptr();
743 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
744 // slot is valid and will not be moved, because we pin it later.
745 unsafe { init.__pinned_init(slot)? };
746 // SAFETY: All fields have been initialized.
747 Ok(unsafe { self.assume_init() }.into())
748 }
749}
750
751impl<T> UniqueArc<T> {
752 /// Tries to allocate a new [`UniqueArc`] instance.
753 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
754 Ok(Self {
755 // INVARIANT: The newly-created object has a refcount of 1.
756 inner: Arc::new(value, flags)?,
757 })
758 }
759
760 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
761 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
762 // INVARIANT: The refcount is initialised to a non-zero value.
763 let inner = KBox::try_init::<AllocError>(
764 try_init!(ArcInner {
765 refcount: Refcount::new(1),
766 data <- pin_init::uninit::<T, AllocError>(),
767 }? AllocError),
768 flags,
769 )?;
770 Ok(UniqueArc {
771 // INVARIANT: The newly-created object has a refcount of 1.
772 // SAFETY: The pointer from the `KBox` is valid.
773 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
774 })
775 }
776}
777
778impl<T> UniqueArc<MaybeUninit<T>> {
779 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
780 pub fn write(mut self, value: T) -> UniqueArc<T> {
781 self.deref_mut().write(value);
782 // SAFETY: We just wrote the value to be initialized.
783 unsafe { self.assume_init() }
784 }
785
786 /// Unsafely assume that `self` is initialized.
787 ///
788 /// # Safety
789 ///
790 /// The caller guarantees that the value behind this pointer has been initialized. It is
791 /// *immediate* UB to call this when the value is not initialized.
792 pub unsafe fn assume_init(self) -> UniqueArc<T> {
793 let inner = ManuallyDrop::new(self).inner.ptr;
794 UniqueArc {
795 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
796 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
797 inner: unsafe { Arc::from_inner(inner.cast()) },
798 }
799 }
800
801 /// Initialize `self` using the given initializer.
802 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
803 // SAFETY: The supplied pointer is valid for initialization.
804 match unsafe { init.__init(self.as_mut_ptr()) } {
805 // SAFETY: Initialization completed successfully.
806 Ok(()) => Ok(unsafe { self.assume_init() }),
807 Err(err) => Err(err),
808 }
809 }
810
811 /// Pin-initialize `self` using the given pin-initializer.
812 pub fn pin_init_with<E>(
813 mut self,
814 init: impl PinInit<T, E>,
815 ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
816 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
817 // to ensure it does not move.
818 match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
819 // SAFETY: Initialization completed successfully.
820 Ok(()) => Ok(unsafe { self.assume_init() }.into()),
821 Err(err) => Err(err),
822 }
823 }
824}
825
826impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
827 fn from(obj: UniqueArc<T>) -> Self {
828 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
829 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
830 unsafe { Pin::new_unchecked(obj) }
831 }
832}
833
834impl<T: ?Sized> Deref for UniqueArc<T> {
835 type Target = T;
836
837 fn deref(&self) -> &Self::Target {
838 self.inner.deref()
839 }
840}
841
842impl<T: ?Sized> DerefMut for UniqueArc<T> {
843 fn deref_mut(&mut self) -> &mut Self::Target {
844 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
845 // it is safe to dereference it. Additionally, we know there is only one reference when
846 // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
847 unsafe { &mut self.inner.ptr.as_mut().data }
848 }
849}
850
851/// # Examples
852///
853/// ```
854/// # use core::borrow::Borrow;
855/// # use kernel::sync::UniqueArc;
856/// struct Foo<B: Borrow<u32>>(B);
857///
858/// // Owned instance.
859/// let owned = Foo(1);
860///
861/// // Owned instance using `UniqueArc`.
862/// let arc = UniqueArc::new(1, GFP_KERNEL)?;
863/// let shared = Foo(arc);
864///
865/// let i = 1;
866/// // Borrowed from `i`.
867/// let borrowed = Foo(&i);
868/// # Ok::<(), Error>(())
869/// ```
870impl<T: ?Sized> Borrow<T> for UniqueArc<T> {
871 fn borrow(&self) -> &T {
872 self.deref()
873 }
874}
875
876/// # Examples
877///
878/// ```
879/// # use core::borrow::BorrowMut;
880/// # use kernel::sync::UniqueArc;
881/// struct Foo<B: BorrowMut<u32>>(B);
882///
883/// // Owned instance.
884/// let owned = Foo(1);
885///
886/// // Owned instance using `UniqueArc`.
887/// let arc = UniqueArc::new(1, GFP_KERNEL)?;
888/// let shared = Foo(arc);
889///
890/// let mut i = 1;
891/// // Borrowed from `i`.
892/// let borrowed = Foo(&mut i);
893/// # Ok::<(), Error>(())
894/// ```
895impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> {
896 fn borrow_mut(&mut self) -> &mut T {
897 self.deref_mut()
898 }
899}
900
901impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
902 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
903 fmt::Display::fmt(self.deref(), f)
904 }
905}
906
907impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
908 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
909 fmt::Display::fmt(self.deref(), f)
910 }
911}
912
913impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
914 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
915 fmt::Debug::fmt(self.deref(), f)
916 }
917}
918
919impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
920 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
921 fmt::Debug::fmt(self.deref(), f)
922 }
923}