kernel/sync/
arc.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! A reference-counted pointer.
4//!
5//! This module implements a way for users to create reference-counted objects and pointers to
6//! them. Such a pointer automatically increments and decrements the count, and drops the
7//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8//! threads.
9//!
10//! It is different from the standard library's [`Arc`] in a few ways:
11//! 1. It is backed by the kernel's `refcount_t` type.
12//! 2. It does not support weak references, which allows it to be half the size.
13//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15//! 5. The object in [`Arc`] is pinned implicitly.
16//!
17//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18
19use crate::{
20    alloc::{AllocError, Flags, KBox},
21    bindings,
22    init::InPlaceInit,
23    try_init,
24    types::{ForeignOwnable, Opaque},
25};
26use core::{
27    alloc::Layout,
28    fmt,
29    marker::PhantomData,
30    mem::{ManuallyDrop, MaybeUninit},
31    ops::{Deref, DerefMut},
32    pin::Pin,
33    ptr::NonNull,
34};
35use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
36
37mod std_vendor;
38
39/// A reference-counted pointer to an instance of `T`.
40///
41/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43///
44/// # Invariants
45///
46/// The reference count on an instance of [`Arc`] is always non-zero.
47/// The object pointed to by [`Arc`] is always pinned.
48///
49/// # Examples
50///
51/// ```
52/// use kernel::sync::Arc;
53///
54/// struct Example {
55///     a: u32,
56///     b: u32,
57/// }
58///
59/// // Create a refcounted instance of `Example`.
60/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61///
62/// // Get a new pointer to `obj` and increment the refcount.
63/// let cloned = obj.clone();
64///
65/// // Assert that both `obj` and `cloned` point to the same underlying object.
66/// assert!(core::ptr::eq(&*obj, &*cloned));
67///
68/// // Destroy `obj` and decrement its refcount.
69/// drop(obj);
70///
71/// // Check that the values are still accessible through `cloned`.
72/// assert_eq!(cloned.a, 10);
73/// assert_eq!(cloned.b, 20);
74///
75/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76/// # Ok::<(), Error>(())
77/// ```
78///
79/// Using `Arc<T>` as the type of `self`:
80///
81/// ```
82/// use kernel::sync::Arc;
83///
84/// struct Example {
85///     a: u32,
86///     b: u32,
87/// }
88///
89/// impl Example {
90///     fn take_over(self: Arc<Self>) {
91///         // ...
92///     }
93///
94///     fn use_reference(self: &Arc<Self>) {
95///         // ...
96///     }
97/// }
98///
99/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100/// obj.use_reference();
101/// obj.take_over();
102/// # Ok::<(), Error>(())
103/// ```
104///
105/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106///
107/// ```
108/// use kernel::sync::{Arc, ArcBorrow};
109///
110/// trait MyTrait {
111///     // Trait has a function whose `self` type is `Arc<Self>`.
112///     fn example1(self: Arc<Self>) {}
113///
114///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115///     fn example2(self: ArcBorrow<'_, Self>) {}
116/// }
117///
118/// struct Example;
119/// impl MyTrait for Example {}
120///
121/// // `obj` has type `Arc<Example>`.
122/// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123///
124/// // `coerced` has type `Arc<dyn MyTrait>`.
125/// let coerced: Arc<dyn MyTrait> = obj;
126/// # Ok::<(), Error>(())
127/// ```
128#[repr(transparent)]
129#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
130pub struct Arc<T: ?Sized> {
131    ptr: NonNull<ArcInner<T>>,
132    // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
133    // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
134    // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
135    // meaningful with respect to dropck - but this may change in the future so this is left here
136    // out of an abundance of caution.
137    //
138    // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking
139    // for more detail on the semantics of dropck in the presence of `PhantomData`.
140    _p: PhantomData<ArcInner<T>>,
141}
142
143#[pin_data]
144#[repr(C)]
145struct ArcInner<T: ?Sized> {
146    refcount: Opaque<bindings::refcount_t>,
147    data: T,
148}
149
150impl<T: ?Sized> ArcInner<T> {
151    /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
152    ///
153    /// # Safety
154    ///
155    /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
156    /// not yet have been destroyed.
157    unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
158        let refcount_layout = Layout::new::<bindings::refcount_t>();
159        // SAFETY: The caller guarantees that the pointer is valid.
160        let val_layout = Layout::for_value(unsafe { &*ptr });
161        // SAFETY: We're computing the layout of a real struct that existed when compiling this
162        // binary, so its layout is not so large that it can trigger arithmetic overflow.
163        let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
164
165        // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
166        // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
167        //
168        // This is documented at:
169        // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
170        let ptr = ptr as *const ArcInner<T>;
171
172        // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
173        // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
174        // still valid.
175        let ptr = unsafe { ptr.byte_sub(val_offset) };
176
177        // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
178        // address.
179        unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
180    }
181}
182
183// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
184// dynamically-sized type (DST) `U`.
185#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
186impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
187
188// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
189#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
190impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
191
192// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
193// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
194// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
195// mutable reference when the reference count reaches zero and `T` is dropped.
196unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
197
198// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
199// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
200// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
201// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
202// the reference count reaches zero and `T` is dropped.
203unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
204
205impl<T> InPlaceInit<T> for Arc<T> {
206    type PinnedSelf = Self;
207
208    #[inline]
209    fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
210    where
211        E: From<AllocError>,
212    {
213        UniqueArc::try_pin_init(init, flags).map(|u| u.into())
214    }
215
216    #[inline]
217    fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
218    where
219        E: From<AllocError>,
220    {
221        UniqueArc::try_init(init, flags).map(|u| u.into())
222    }
223}
224
225impl<T> Arc<T> {
226    /// Constructs a new reference counted instance of `T`.
227    pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
228        // INVARIANT: The refcount is initialised to a non-zero value.
229        let value = ArcInner {
230            // SAFETY: There are no safety requirements for this FFI call.
231            refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
232            data: contents,
233        };
234
235        let inner = KBox::new(value, flags)?;
236        let inner = KBox::leak(inner).into();
237
238        // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
239        // `Arc` object.
240        Ok(unsafe { Self::from_inner(inner) })
241    }
242}
243
244impl<T: ?Sized> Arc<T> {
245    /// Constructs a new [`Arc`] from an existing [`ArcInner`].
246    ///
247    /// # Safety
248    ///
249    /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
250    /// count, one of which will be owned by the new [`Arc`] instance.
251    unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
252        // INVARIANT: By the safety requirements, the invariants hold.
253        Arc {
254            ptr: inner,
255            _p: PhantomData,
256        }
257    }
258
259    /// Convert the [`Arc`] into a raw pointer.
260    ///
261    /// The raw pointer has ownership of the refcount that this Arc object owned.
262    pub fn into_raw(self) -> *const T {
263        let ptr = self.ptr.as_ptr();
264        core::mem::forget(self);
265        // SAFETY: The pointer is valid.
266        unsafe { core::ptr::addr_of!((*ptr).data) }
267    }
268
269    /// Return a raw pointer to the data in this arc.
270    pub fn as_ptr(this: &Self) -> *const T {
271        let ptr = this.ptr.as_ptr();
272
273        // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
274        // field projection to `data`is within bounds of the allocation.
275        unsafe { core::ptr::addr_of!((*ptr).data) }
276    }
277
278    /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
279    ///
280    /// # Safety
281    ///
282    /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
283    /// must not be called more than once for each previous call to [`Arc::into_raw`].
284    pub unsafe fn from_raw(ptr: *const T) -> Self {
285        // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
286        // `Arc` that is still valid.
287        let ptr = unsafe { ArcInner::container_of(ptr) };
288
289        // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
290        // reference count held then will be owned by the new `Arc` object.
291        unsafe { Self::from_inner(ptr) }
292    }
293
294    /// Returns an [`ArcBorrow`] from the given [`Arc`].
295    ///
296    /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
297    /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
298    #[inline]
299    pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
300        // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
301        // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
302        // reference can be created.
303        unsafe { ArcBorrow::new(self.ptr) }
304    }
305
306    /// Compare whether two [`Arc`] pointers reference the same underlying object.
307    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
308        core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
309    }
310
311    /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
312    ///
313    /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
314    /// this method will never call the destructor of the value.
315    ///
316    /// # Examples
317    ///
318    /// ```
319    /// use kernel::sync::{Arc, UniqueArc};
320    ///
321    /// let arc = Arc::new(42, GFP_KERNEL)?;
322    /// let unique_arc = arc.into_unique_or_drop();
323    ///
324    /// // The above conversion should succeed since refcount of `arc` is 1.
325    /// assert!(unique_arc.is_some());
326    ///
327    /// assert_eq!(*(unique_arc.unwrap()), 42);
328    ///
329    /// # Ok::<(), Error>(())
330    /// ```
331    ///
332    /// ```
333    /// use kernel::sync::{Arc, UniqueArc};
334    ///
335    /// let arc = Arc::new(42, GFP_KERNEL)?;
336    /// let another = arc.clone();
337    ///
338    /// let unique_arc = arc.into_unique_or_drop();
339    ///
340    /// // The above conversion should fail since refcount of `arc` is >1.
341    /// assert!(unique_arc.is_none());
342    ///
343    /// # Ok::<(), Error>(())
344    /// ```
345    pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
346        // We will manually manage the refcount in this method, so we disable the destructor.
347        let me = ManuallyDrop::new(self);
348        // SAFETY: We own a refcount, so the pointer is still valid.
349        let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
350
351        // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
352        // return without further touching the `Arc`. If the refcount reaches zero, then there are
353        // no other arcs, and we can create a `UniqueArc`.
354        //
355        // SAFETY: We own a refcount, so the pointer is not dangling.
356        let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
357        if is_zero {
358            // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
359            // accesses to the refcount.
360            unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
361
362            // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
363            // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
364            // their values.
365            Some(Pin::from(UniqueArc {
366                inner: ManuallyDrop::into_inner(me),
367            }))
368        } else {
369            None
370        }
371    }
372}
373
374impl<T: 'static> ForeignOwnable for Arc<T> {
375    type Borrowed<'a> = ArcBorrow<'a, T>;
376    type BorrowedMut<'a> = Self::Borrowed<'a>;
377
378    fn into_foreign(self) -> *mut crate::ffi::c_void {
379        ManuallyDrop::new(self).ptr.as_ptr().cast()
380    }
381
382    unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self {
383        // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
384        // call to `Self::into_foreign`.
385        let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
386
387        // SAFETY: By the safety requirement of this function, we know that `ptr` came from
388        // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
389        // holds a reference count increment that is transferrable to us.
390        unsafe { Self::from_inner(inner) }
391    }
392
393    unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> {
394        // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
395        // call to `Self::into_foreign`.
396        let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
397
398        // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
399        // for the lifetime of the returned value.
400        unsafe { ArcBorrow::new(inner) }
401    }
402
403    unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> {
404        // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
405        // requirements for `borrow`.
406        unsafe { Self::borrow(ptr) }
407    }
408}
409
410impl<T: ?Sized> Deref for Arc<T> {
411    type Target = T;
412
413    fn deref(&self) -> &Self::Target {
414        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
415        // safe to dereference it.
416        unsafe { &self.ptr.as_ref().data }
417    }
418}
419
420impl<T: ?Sized> AsRef<T> for Arc<T> {
421    fn as_ref(&self) -> &T {
422        self.deref()
423    }
424}
425
426impl<T: ?Sized> Clone for Arc<T> {
427    fn clone(&self) -> Self {
428        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
429        // safe to dereference it.
430        let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
431
432        // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
433        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
434        // safe to increment the refcount.
435        unsafe { bindings::refcount_inc(refcount) };
436
437        // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
438        unsafe { Self::from_inner(self.ptr) }
439    }
440}
441
442impl<T: ?Sized> Drop for Arc<T> {
443    fn drop(&mut self) {
444        // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
445        // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
446        // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
447        // freed/invalid memory as long as it is never dereferenced.
448        let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
449
450        // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
451        // this instance is being dropped, so the broken invariant is not observable.
452        // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
453        let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
454        if is_zero {
455            // The count reached zero, we must free the memory.
456            //
457            // SAFETY: The pointer was initialised from the result of `KBox::leak`.
458            unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
459        }
460    }
461}
462
463impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
464    fn from(item: UniqueArc<T>) -> Self {
465        item.inner
466    }
467}
468
469impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
470    fn from(item: Pin<UniqueArc<T>>) -> Self {
471        // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
472        unsafe { Pin::into_inner_unchecked(item).inner }
473    }
474}
475
476/// A borrowed reference to an [`Arc`] instance.
477///
478/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
479/// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
480///
481/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
482/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
483/// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
484/// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
485/// needed.
486///
487/// # Invariants
488///
489/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
490/// lifetime of the [`ArcBorrow`] instance.
491///
492/// # Example
493///
494/// ```
495/// use kernel::sync::{Arc, ArcBorrow};
496///
497/// struct Example;
498///
499/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
500///     e.into()
501/// }
502///
503/// let obj = Arc::new(Example, GFP_KERNEL)?;
504/// let cloned = do_something(obj.as_arc_borrow());
505///
506/// // Assert that both `obj` and `cloned` point to the same underlying object.
507/// assert!(core::ptr::eq(&*obj, &*cloned));
508/// # Ok::<(), Error>(())
509/// ```
510///
511/// Using `ArcBorrow<T>` as the type of `self`:
512///
513/// ```
514/// use kernel::sync::{Arc, ArcBorrow};
515///
516/// struct Example {
517///     a: u32,
518///     b: u32,
519/// }
520///
521/// impl Example {
522///     fn use_reference(self: ArcBorrow<'_, Self>) {
523///         // ...
524///     }
525/// }
526///
527/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
528/// obj.as_arc_borrow().use_reference();
529/// # Ok::<(), Error>(())
530/// ```
531#[repr(transparent)]
532#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
533pub struct ArcBorrow<'a, T: ?Sized + 'a> {
534    inner: NonNull<ArcInner<T>>,
535    _p: PhantomData<&'a ()>,
536}
537
538// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
539// `ArcBorrow<U>`.
540#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
541impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
542    for ArcBorrow<'_, T>
543{
544}
545
546impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
547    fn clone(&self) -> Self {
548        *self
549    }
550}
551
552impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
553
554impl<T: ?Sized> ArcBorrow<'_, T> {
555    /// Creates a new [`ArcBorrow`] instance.
556    ///
557    /// # Safety
558    ///
559    /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
560    /// 1. That `inner` remains valid;
561    /// 2. That no mutable references to `inner` are created.
562    unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
563        // INVARIANT: The safety requirements guarantee the invariants.
564        Self {
565            inner,
566            _p: PhantomData,
567        }
568    }
569
570    /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
571    /// [`Arc::into_raw`] or [`Arc::as_ptr`].
572    ///
573    /// # Safety
574    ///
575    /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
576    /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
577    ///   not hit zero.
578    /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
579    ///   [`UniqueArc`] reference to this value.
580    pub unsafe fn from_raw(ptr: *const T) -> Self {
581        // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
582        // `Arc` that is still valid.
583        let ptr = unsafe { ArcInner::container_of(ptr) };
584
585        // SAFETY: The caller promises that the value remains valid since the reference count must
586        // not hit zero, and no mutable reference will be created since that would involve a
587        // `UniqueArc`.
588        unsafe { Self::new(ptr) }
589    }
590}
591
592impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
593    fn from(b: ArcBorrow<'_, T>) -> Self {
594        // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
595        // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
596        // increment.
597        ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
598            .deref()
599            .clone()
600    }
601}
602
603impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
604    type Target = T;
605
606    fn deref(&self) -> &Self::Target {
607        // SAFETY: By the type invariant, the underlying object is still alive with no mutable
608        // references to it, so it is safe to create a shared reference.
609        unsafe { &self.inner.as_ref().data }
610    }
611}
612
613/// A refcounted object that is known to have a refcount of 1.
614///
615/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
616///
617/// # Invariants
618///
619/// `inner` always has a reference count of 1.
620///
621/// # Examples
622///
623/// In the following example, we make changes to the inner object before turning it into an
624/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
625/// cannot fail.
626///
627/// ```
628/// use kernel::sync::{Arc, UniqueArc};
629///
630/// struct Example {
631///     a: u32,
632///     b: u32,
633/// }
634///
635/// fn test() -> Result<Arc<Example>> {
636///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
637///     x.a += 1;
638///     x.b += 1;
639///     Ok(x.into())
640/// }
641///
642/// # test().unwrap();
643/// ```
644///
645/// In the following example we first allocate memory for a refcounted `Example` but we don't
646/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
647/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
648/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
649///
650/// ```
651/// use kernel::sync::{Arc, UniqueArc};
652///
653/// struct Example {
654///     a: u32,
655///     b: u32,
656/// }
657///
658/// fn test() -> Result<Arc<Example>> {
659///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
660///     Ok(x.write(Example { a: 10, b: 20 }).into())
661/// }
662///
663/// # test().unwrap();
664/// ```
665///
666/// In the last example below, the caller gets a pinned instance of `Example` while converting to
667/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
668/// initialisation, for example, when initialising fields that are wrapped in locks.
669///
670/// ```
671/// use kernel::sync::{Arc, UniqueArc};
672///
673/// struct Example {
674///     a: u32,
675///     b: u32,
676/// }
677///
678/// fn test() -> Result<Arc<Example>> {
679///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
680///     // We can modify `pinned` because it is `Unpin`.
681///     pinned.as_mut().a += 1;
682///     Ok(pinned.into())
683/// }
684///
685/// # test().unwrap();
686/// ```
687pub struct UniqueArc<T: ?Sized> {
688    inner: Arc<T>,
689}
690
691impl<T> InPlaceInit<T> for UniqueArc<T> {
692    type PinnedSelf = Pin<Self>;
693
694    #[inline]
695    fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
696    where
697        E: From<AllocError>,
698    {
699        UniqueArc::new_uninit(flags)?.write_pin_init(init)
700    }
701
702    #[inline]
703    fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
704    where
705        E: From<AllocError>,
706    {
707        UniqueArc::new_uninit(flags)?.write_init(init)
708    }
709}
710
711impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
712    type Initialized = UniqueArc<T>;
713
714    fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
715        let slot = self.as_mut_ptr();
716        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
717        // slot is valid.
718        unsafe { init.__init(slot)? };
719        // SAFETY: All fields have been initialized.
720        Ok(unsafe { self.assume_init() })
721    }
722
723    fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
724        let slot = self.as_mut_ptr();
725        // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
726        // slot is valid and will not be moved, because we pin it later.
727        unsafe { init.__pinned_init(slot)? };
728        // SAFETY: All fields have been initialized.
729        Ok(unsafe { self.assume_init() }.into())
730    }
731}
732
733impl<T> UniqueArc<T> {
734    /// Tries to allocate a new [`UniqueArc`] instance.
735    pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
736        Ok(Self {
737            // INVARIANT: The newly-created object has a refcount of 1.
738            inner: Arc::new(value, flags)?,
739        })
740    }
741
742    /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
743    pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
744        // INVARIANT: The refcount is initialised to a non-zero value.
745        let inner = KBox::try_init::<AllocError>(
746            try_init!(ArcInner {
747                // SAFETY: There are no safety requirements for this FFI call.
748                refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
749                data <- pin_init::uninit::<T, AllocError>(),
750            }? AllocError),
751            flags,
752        )?;
753        Ok(UniqueArc {
754            // INVARIANT: The newly-created object has a refcount of 1.
755            // SAFETY: The pointer from the `KBox` is valid.
756            inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
757        })
758    }
759}
760
761impl<T> UniqueArc<MaybeUninit<T>> {
762    /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
763    pub fn write(mut self, value: T) -> UniqueArc<T> {
764        self.deref_mut().write(value);
765        // SAFETY: We just wrote the value to be initialized.
766        unsafe { self.assume_init() }
767    }
768
769    /// Unsafely assume that `self` is initialized.
770    ///
771    /// # Safety
772    ///
773    /// The caller guarantees that the value behind this pointer has been initialized. It is
774    /// *immediate* UB to call this when the value is not initialized.
775    pub unsafe fn assume_init(self) -> UniqueArc<T> {
776        let inner = ManuallyDrop::new(self).inner.ptr;
777        UniqueArc {
778            // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
779            // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
780            inner: unsafe { Arc::from_inner(inner.cast()) },
781        }
782    }
783
784    /// Initialize `self` using the given initializer.
785    pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
786        // SAFETY: The supplied pointer is valid for initialization.
787        match unsafe { init.__init(self.as_mut_ptr()) } {
788            // SAFETY: Initialization completed successfully.
789            Ok(()) => Ok(unsafe { self.assume_init() }),
790            Err(err) => Err(err),
791        }
792    }
793
794    /// Pin-initialize `self` using the given pin-initializer.
795    pub fn pin_init_with<E>(
796        mut self,
797        init: impl PinInit<T, E>,
798    ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
799        // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
800        // to ensure it does not move.
801        match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
802            // SAFETY: Initialization completed successfully.
803            Ok(()) => Ok(unsafe { self.assume_init() }.into()),
804            Err(err) => Err(err),
805        }
806    }
807}
808
809impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
810    fn from(obj: UniqueArc<T>) -> Self {
811        // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
812        // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
813        unsafe { Pin::new_unchecked(obj) }
814    }
815}
816
817impl<T: ?Sized> Deref for UniqueArc<T> {
818    type Target = T;
819
820    fn deref(&self) -> &Self::Target {
821        self.inner.deref()
822    }
823}
824
825impl<T: ?Sized> DerefMut for UniqueArc<T> {
826    fn deref_mut(&mut self) -> &mut Self::Target {
827        // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
828        // it is safe to dereference it. Additionally, we know there is only one reference when
829        // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
830        unsafe { &mut self.inner.ptr.as_mut().data }
831    }
832}
833
834impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
835    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
836        fmt::Display::fmt(self.deref(), f)
837    }
838}
839
840impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
841    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
842        fmt::Display::fmt(self.deref(), f)
843    }
844}
845
846impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
847    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
848        fmt::Debug::fmt(self.deref(), f)
849    }
850}
851
852impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
853    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
854        fmt::Debug::fmt(self.deref(), f)
855    }
856}