kernel/io.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Memory-mapped IO.
4//!
5//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
6
7use crate::{
8 bindings,
9 prelude::*, //
10};
11
12pub mod mem;
13pub mod poll;
14pub mod resource;
15
16pub use resource::Resource;
17
18/// Physical address type.
19///
20/// This is a type alias to either `u32` or `u64` depending on the config option
21/// `CONFIG_PHYS_ADDR_T_64BIT`, and it can be a u64 even on 32-bit architectures.
22pub type PhysAddr = bindings::phys_addr_t;
23
24/// Resource Size type.
25///
26/// This is a type alias to either `u32` or `u64` depending on the config option
27/// `CONFIG_PHYS_ADDR_T_64BIT`, and it can be a u64 even on 32-bit architectures.
28pub type ResourceSize = bindings::resource_size_t;
29
30/// Raw representation of an MMIO region.
31///
32/// By itself, the existence of an instance of this structure does not provide any guarantees that
33/// the represented MMIO region does exist or is properly mapped.
34///
35/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
36/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
37/// any guarantees are given.
38pub struct IoRaw<const SIZE: usize = 0> {
39 addr: usize,
40 maxsize: usize,
41}
42
43impl<const SIZE: usize> IoRaw<SIZE> {
44 /// Returns a new `IoRaw` instance on success, an error otherwise.
45 pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
46 if maxsize < SIZE {
47 return Err(EINVAL);
48 }
49
50 Ok(Self { addr, maxsize })
51 }
52
53 /// Returns the base address of the MMIO region.
54 #[inline]
55 pub fn addr(&self) -> usize {
56 self.addr
57 }
58
59 /// Returns the maximum size of the MMIO region.
60 #[inline]
61 pub fn maxsize(&self) -> usize {
62 self.maxsize
63 }
64}
65
66/// IO-mapped memory region.
67///
68/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
69/// mapping, performing an additional region request etc.
70///
71/// # Invariant
72///
73/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
74/// `maxsize`.
75///
76/// # Examples
77///
78/// ```no_run
79/// use kernel::{
80/// bindings,
81/// ffi::c_void,
82/// io::{
83/// Io,
84/// IoRaw,
85/// PhysAddr,
86/// },
87/// };
88/// use core::ops::Deref;
89///
90/// // See also `pci::Bar` for a real example.
91/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
92///
93/// impl<const SIZE: usize> IoMem<SIZE> {
94/// /// # Safety
95/// ///
96/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
97/// /// virtual address space.
98/// unsafe fn new(paddr: usize) -> Result<Self>{
99/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
100/// // valid for `ioremap`.
101/// let addr = unsafe { bindings::ioremap(paddr as PhysAddr, SIZE) };
102/// if addr.is_null() {
103/// return Err(ENOMEM);
104/// }
105///
106/// Ok(IoMem(IoRaw::new(addr as usize, SIZE)?))
107/// }
108/// }
109///
110/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
111/// fn drop(&mut self) {
112/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
113/// unsafe { bindings::iounmap(self.0.addr() as *mut c_void); };
114/// }
115/// }
116///
117/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
118/// type Target = Io<SIZE>;
119///
120/// fn deref(&self) -> &Self::Target {
121/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
122/// unsafe { Io::from_raw(&self.0) }
123/// }
124/// }
125///
126///# fn no_run() -> Result<(), Error> {
127/// // SAFETY: Invalid usage for example purposes.
128/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
129/// iomem.write32(0x42, 0x0);
130/// assert!(iomem.try_write32(0x42, 0x0).is_ok());
131/// assert!(iomem.try_write32(0x42, 0x4).is_err());
132/// # Ok(())
133/// # }
134/// ```
135#[repr(transparent)]
136pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
137
138macro_rules! define_read {
139 ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident -> $type_name:ty) => {
140 /// Read IO data from a given offset known at compile time.
141 ///
142 /// Bound checks are performed on compile time, hence if the offset is not known at compile
143 /// time, the build will fail.
144 $(#[$attr])*
145 // Always inline to optimize out error path of `io_addr_assert`.
146 #[inline(always)]
147 pub fn $name(&self, offset: usize) -> $type_name {
148 let addr = self.io_addr_assert::<$type_name>(offset);
149
150 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
151 unsafe { bindings::$c_fn(addr as *const c_void) }
152 }
153
154 /// Read IO data from a given offset.
155 ///
156 /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
157 /// out of bounds.
158 $(#[$attr])*
159 pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
160 let addr = self.io_addr::<$type_name>(offset)?;
161
162 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
163 Ok(unsafe { bindings::$c_fn(addr as *const c_void) })
164 }
165 };
166}
167
168macro_rules! define_write {
169 ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident <- $type_name:ty) => {
170 /// Write IO data from a given offset known at compile time.
171 ///
172 /// Bound checks are performed on compile time, hence if the offset is not known at compile
173 /// time, the build will fail.
174 $(#[$attr])*
175 // Always inline to optimize out error path of `io_addr_assert`.
176 #[inline(always)]
177 pub fn $name(&self, value: $type_name, offset: usize) {
178 let addr = self.io_addr_assert::<$type_name>(offset);
179
180 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
181 unsafe { bindings::$c_fn(value, addr as *mut c_void) }
182 }
183
184 /// Write IO data from a given offset.
185 ///
186 /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
187 /// out of bounds.
188 $(#[$attr])*
189 pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
190 let addr = self.io_addr::<$type_name>(offset)?;
191
192 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
193 unsafe { bindings::$c_fn(value, addr as *mut c_void) }
194 Ok(())
195 }
196 };
197}
198
199impl<const SIZE: usize> Io<SIZE> {
200 /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
201 ///
202 /// # Safety
203 ///
204 /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
205 /// `maxsize`.
206 pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
207 // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
208 unsafe { &*core::ptr::from_ref(raw).cast() }
209 }
210
211 /// Returns the base address of this mapping.
212 #[inline]
213 pub fn addr(&self) -> usize {
214 self.0.addr()
215 }
216
217 /// Returns the maximum size of this mapping.
218 #[inline]
219 pub fn maxsize(&self) -> usize {
220 self.0.maxsize()
221 }
222
223 #[inline]
224 const fn offset_valid<U>(offset: usize, size: usize) -> bool {
225 let type_size = core::mem::size_of::<U>();
226 if let Some(end) = offset.checked_add(type_size) {
227 end <= size && offset % type_size == 0
228 } else {
229 false
230 }
231 }
232
233 #[inline]
234 fn io_addr<U>(&self, offset: usize) -> Result<usize> {
235 if !Self::offset_valid::<U>(offset, self.maxsize()) {
236 return Err(EINVAL);
237 }
238
239 // Probably no need to check, since the safety requirements of `Self::new` guarantee that
240 // this can't overflow.
241 self.addr().checked_add(offset).ok_or(EINVAL)
242 }
243
244 // Always inline to optimize out error path of `build_assert`.
245 #[inline(always)]
246 fn io_addr_assert<U>(&self, offset: usize) -> usize {
247 build_assert!(Self::offset_valid::<U>(offset, SIZE));
248
249 self.addr() + offset
250 }
251
252 define_read!(read8, try_read8, readb -> u8);
253 define_read!(read16, try_read16, readw -> u16);
254 define_read!(read32, try_read32, readl -> u32);
255 define_read!(
256 #[cfg(CONFIG_64BIT)]
257 read64,
258 try_read64,
259 readq -> u64
260 );
261
262 define_read!(read8_relaxed, try_read8_relaxed, readb_relaxed -> u8);
263 define_read!(read16_relaxed, try_read16_relaxed, readw_relaxed -> u16);
264 define_read!(read32_relaxed, try_read32_relaxed, readl_relaxed -> u32);
265 define_read!(
266 #[cfg(CONFIG_64BIT)]
267 read64_relaxed,
268 try_read64_relaxed,
269 readq_relaxed -> u64
270 );
271
272 define_write!(write8, try_write8, writeb <- u8);
273 define_write!(write16, try_write16, writew <- u16);
274 define_write!(write32, try_write32, writel <- u32);
275 define_write!(
276 #[cfg(CONFIG_64BIT)]
277 write64,
278 try_write64,
279 writeq <- u64
280 );
281
282 define_write!(write8_relaxed, try_write8_relaxed, writeb_relaxed <- u8);
283 define_write!(write16_relaxed, try_write16_relaxed, writew_relaxed <- u16);
284 define_write!(write32_relaxed, try_write32_relaxed, writel_relaxed <- u32);
285 define_write!(
286 #[cfg(CONFIG_64BIT)]
287 write64_relaxed,
288 try_write64_relaxed,
289 writeq_relaxed <- u64
290 );
291}