pin_init/macros.rs
1// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3//! This module provides the macros that actually implement the proc-macros `pin_data` and
4//! `pinned_drop`. It also contains `__init_internal`, the implementation of the
5//! `{try_}{pin_}init!` macros.
6//!
7//! These macros should never be called directly, since they expect their input to be
8//! in a certain format which is internal. If used incorrectly, these macros can lead to UB even in
9//! safe code! Use the public facing macros instead.
10//!
11//! This architecture has been chosen because the kernel does not yet have access to `syn` which
12//! would make matters a lot easier for implementing these as proc-macros.
13//!
14//! Since this library and the kernel implementation should diverge as little as possible, the same
15//! approach has been taken here.
16//!
17//! # Macro expansion example
18//!
19//! This section is intended for readers trying to understand the macros in this module and the
20//! `[try_][pin_]init!` macros from `lib.rs`.
21//!
22//! We will look at the following example:
23//!
24//! ```rust,ignore
25//! #[pin_data]
26//! #[repr(C)]
27//! struct Bar<T> {
28//! #[pin]
29//! t: T,
30//! pub x: usize,
31//! }
32//!
33//! impl<T> Bar<T> {
34//! fn new(t: T) -> impl PinInit<Self> {
35//! pin_init!(Self { t, x: 0 })
36//! }
37//! }
38//!
39//! #[pin_data(PinnedDrop)]
40//! struct Foo {
41//! a: usize,
42//! #[pin]
43//! b: Bar<u32>,
44//! }
45//!
46//! #[pinned_drop]
47//! impl PinnedDrop for Foo {
48//! fn drop(self: Pin<&mut Self>) {
49//! println!("{self:p} is getting dropped.");
50//! }
51//! }
52//!
53//! let a = 42;
54//! let initializer = pin_init!(Foo {
55//! a,
56//! b <- Bar::new(36),
57//! });
58//! ```
59//!
60//! This example includes the most common and important features of the pin-init API.
61//!
62//! Below you can find individual section about the different macro invocations. Here are some
63//! general things we need to take into account when designing macros:
64//! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()`
65//! this ensures that the correct item is used, since users could define their own `mod core {}`
66//! and then their own `panic!` inside to execute arbitrary code inside of our macro.
67//! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied
68//! expressions inside of an `unsafe` block in the macro, because this would allow users to do
69//! `unsafe` operations without an associated `unsafe` block.
70//!
71//! ## `#[pin_data]` on `Bar`
72//!
73//! This macro is used to specify which fields are structurally pinned and which fields are not. It
74//! is placed on the struct definition and allows `#[pin]` to be placed on the fields.
75//!
76//! Here is the definition of `Bar` from our example:
77//!
78//! ```rust,ignore
79//! #[pin_data]
80//! #[repr(C)]
81//! struct Bar<T> {
82//! #[pin]
83//! t: T,
84//! pub x: usize,
85//! }
86//! ```
87//!
88//! This expands to the following code:
89//!
90//! ```rust,ignore
91//! // Firstly the normal definition of the struct, attributes are preserved:
92//! #[repr(C)]
93//! struct Bar<T> {
94//! t: T,
95//! pub x: usize,
96//! }
97//! // Then an anonymous constant is defined, this is because we do not want any code to access the
98//! // types that we define inside:
99//! const _: () = {
100//! // We define the pin-data carrying struct, it is a ZST and needs to have the same generics,
101//! // since we need to implement access functions for each field and thus need to know its
102//! // type.
103//! struct __ThePinData<T> {
104//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
105//! }
106//! // We implement `Copy` for the pin-data struct, since all functions it defines will take
107//! // `self` by value.
108//! impl<T> ::core::clone::Clone for __ThePinData<T> {
109//! fn clone(&self) -> Self {
110//! *self
111//! }
112//! }
113//! impl<T> ::core::marker::Copy for __ThePinData<T> {}
114//! // For every field of `Bar`, the pin-data struct will define a function with the same name
115//! // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the
116//! // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field
117//! // (if pinning is structural for the field, then `PinInit` otherwise `Init`).
118//! #[allow(dead_code)]
119//! impl<T> __ThePinData<T> {
120//! unsafe fn t<E>(
121//! self,
122//! slot: *mut T,
123//! // Since `t` is `#[pin]`, this is `PinInit`.
124//! init: impl ::pin_init::PinInit<T, E>,
125//! ) -> ::core::result::Result<(), E> {
126//! unsafe { ::pin_init::PinInit::__pinned_init(init, slot) }
127//! }
128//! pub unsafe fn x<E>(
129//! self,
130//! slot: *mut usize,
131//! // Since `x` is not `#[pin]`, this is `Init`.
132//! init: impl ::pin_init::Init<usize, E>,
133//! ) -> ::core::result::Result<(), E> {
134//! unsafe { ::pin_init::Init::__init(init, slot) }
135//! }
136//! }
137//! // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct
138//! // that we constructed above.
139//! unsafe impl<T> ::pin_init::__internal::HasPinData for Bar<T> {
140//! type PinData = __ThePinData<T>;
141//! unsafe fn __pin_data() -> Self::PinData {
142//! __ThePinData {
143//! __phantom: ::core::marker::PhantomData,
144//! }
145//! }
146//! }
147//! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data
148//! // struct. This is important to ensure that no user can implement a rogue `__pin_data`
149//! // function without using `unsafe`.
150//! unsafe impl<T> ::pin_init::__internal::PinData for __ThePinData<T> {
151//! type Datee = Bar<T>;
152//! }
153//! // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is
154//! // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned
155//! // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our
156//! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist
157//! // for two reasons:
158//! // - `__phantom`: every generic must be used, since we cannot really know which generics
159//! // are used, we declare all and then use everything here once.
160//! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant
161//! // over it. The lifetime is needed to work around the limitation that trait bounds must
162//! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is
163//! // unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler
164//! // into accepting these bounds regardless.
165//! #[allow(dead_code)]
166//! struct __Unpin<'__pin, T> {
167//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
168//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
169//! // Our only `#[pin]` field is `t`.
170//! t: T,
171//! }
172//! #[doc(hidden)]
173//! impl<'__pin, T> ::core::marker::Unpin for Bar<T>
174//! where
175//! __Unpin<'__pin, T>: ::core::marker::Unpin,
176//! {}
177//! // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users
178//! // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to
179//! // UB with only safe code, so we disallow this by giving a trait implementation error using
180//! // a direct impl and a blanket implementation.
181//! trait MustNotImplDrop {}
182//! // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do
183//! // (normally people want to know if a type has any kind of drop glue at all, here we want
184//! // to know if it has any kind of custom drop glue, which is exactly what this bound does).
185//! #[expect(drop_bounds)]
186//! impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
187//! impl<T> MustNotImplDrop for Bar<T> {}
188//! // Here comes a convenience check, if one implemented `PinnedDrop`, but forgot to add it to
189//! // `#[pin_data]`, then this will error with the same mechanic as above, this is not needed
190//! // for safety, but a good sanity check, since no normal code calls `PinnedDrop::drop`.
191//! #[expect(non_camel_case_types)]
192//! trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {}
193//! impl<
194//! T: ::pin_init::PinnedDrop,
195//! > UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {}
196//! impl<T> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for Bar<T> {}
197//! };
198//! ```
199//!
200//! ## `pin_init!` in `impl Bar`
201//!
202//! This macro creates an pin-initializer for the given struct. It requires that the struct is
203//! annotated by `#[pin_data]`.
204//!
205//! Here is the impl on `Bar` defining the new function:
206//!
207//! ```rust,ignore
208//! impl<T> Bar<T> {
209//! fn new(t: T) -> impl PinInit<Self> {
210//! pin_init!(Self { t, x: 0 })
211//! }
212//! }
213//! ```
214//!
215//! This expands to the following code:
216//!
217//! ```rust,ignore
218//! impl<T> Bar<T> {
219//! fn new(t: T) -> impl PinInit<Self> {
220//! {
221//! // We do not want to allow arbitrary returns, so we declare this type as the `Ok`
222//! // return type and shadow it later when we insert the arbitrary user code. That way
223//! // there will be no possibility of returning without `unsafe`.
224//! struct __InitOk;
225//! // Get the data about fields from the supplied type.
226//! // - the function is unsafe, hence the unsafe block
227//! // - we `use` the `HasPinData` trait in the block, it is only available in that
228//! // scope.
229//! let data = unsafe {
230//! use ::pin_init::__internal::HasPinData;
231//! Self::__pin_data()
232//! };
233//! // Ensure that `data` really is of type `PinData` and help with type inference:
234//! let init = ::pin_init::__internal::PinData::make_closure::<
235//! _,
236//! __InitOk,
237//! ::core::convert::Infallible,
238//! >(data, move |slot| {
239//! {
240//! // Shadow the structure so it cannot be used to return early. If a user
241//! // tries to write `return Ok(__InitOk)`, then they get a type error,
242//! // since that will refer to this struct instead of the one defined
243//! // above.
244//! struct __InitOk;
245//! // This is the expansion of `t,`, which is syntactic sugar for `t: t,`.
246//! {
247//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).t), t) };
248//! }
249//! // Since initialization could fail later (not in this case, since the
250//! // error type is `Infallible`) we will need to drop this field if there
251//! // is an error later. This `DropGuard` will drop the field when it gets
252//! // dropped and has not yet been forgotten.
253//! let __t_guard = unsafe {
254//! ::pin_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).t))
255//! };
256//! // Expansion of `x: 0,`:
257//! // Since this can be an arbitrary expression we cannot place it inside
258//! // of the `unsafe` block, so we bind it here.
259//! {
260//! let x = 0;
261//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).x), x) };
262//! }
263//! // We again create a `DropGuard`.
264//! let __x_guard = unsafe {
265//! ::pin_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).x))
266//! };
267//! // Since initialization has successfully completed, we can now forget
268//! // the guards. This is not `mem::forget`, since we only have
269//! // `&DropGuard`.
270//! ::core::mem::forget(__x_guard);
271//! ::core::mem::forget(__t_guard);
272//! // Here we use the type checker to ensure that every field has been
273//! // initialized exactly once, since this is `if false` it will never get
274//! // executed, but still type-checked.
275//! // Additionally we abuse `slot` to automatically infer the correct type
276//! // for the struct. This is also another check that every field is
277//! // accessible from this scope.
278//! #[allow(unreachable_code, clippy::diverging_sub_expression)]
279//! let _ = || {
280//! unsafe {
281//! ::core::ptr::write(
282//! slot,
283//! Self {
284//! // We only care about typecheck finding every field
285//! // here, the expression does not matter, just conjure
286//! // one using `panic!()`:
287//! t: ::core::panic!(),
288//! x: ::core::panic!(),
289//! },
290//! );
291//! };
292//! };
293//! }
294//! // We leave the scope above and gain access to the previously shadowed
295//! // `__InitOk` that we need to return.
296//! Ok(__InitOk)
297//! });
298//! // Change the return type from `__InitOk` to `()`.
299//! let init = move |
300//! slot,
301//! | -> ::core::result::Result<(), ::core::convert::Infallible> {
302//! init(slot).map(|__InitOk| ())
303//! };
304//! // Construct the initializer.
305//! let init = unsafe {
306//! ::pin_init::pin_init_from_closure::<
307//! _,
308//! ::core::convert::Infallible,
309//! >(init)
310//! };
311//! init
312//! }
313//! }
314//! }
315//! ```
316//!
317//! ## `#[pin_data]` on `Foo`
318//!
319//! Since we already took a look at `#[pin_data]` on `Bar`, this section will only explain the
320//! differences/new things in the expansion of the `Foo` definition:
321//!
322//! ```rust,ignore
323//! #[pin_data(PinnedDrop)]
324//! struct Foo {
325//! a: usize,
326//! #[pin]
327//! b: Bar<u32>,
328//! }
329//! ```
330//!
331//! This expands to the following code:
332//!
333//! ```rust,ignore
334//! struct Foo {
335//! a: usize,
336//! b: Bar<u32>,
337//! }
338//! const _: () = {
339//! struct __ThePinData {
340//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>,
341//! }
342//! impl ::core::clone::Clone for __ThePinData {
343//! fn clone(&self) -> Self {
344//! *self
345//! }
346//! }
347//! impl ::core::marker::Copy for __ThePinData {}
348//! #[allow(dead_code)]
349//! impl __ThePinData {
350//! unsafe fn b<E>(
351//! self,
352//! slot: *mut Bar<u32>,
353//! init: impl ::pin_init::PinInit<Bar<u32>, E>,
354//! ) -> ::core::result::Result<(), E> {
355//! unsafe { ::pin_init::PinInit::__pinned_init(init, slot) }
356//! }
357//! unsafe fn a<E>(
358//! self,
359//! slot: *mut usize,
360//! init: impl ::pin_init::Init<usize, E>,
361//! ) -> ::core::result::Result<(), E> {
362//! unsafe { ::pin_init::Init::__init(init, slot) }
363//! }
364//! }
365//! unsafe impl ::pin_init::__internal::HasPinData for Foo {
366//! type PinData = __ThePinData;
367//! unsafe fn __pin_data() -> Self::PinData {
368//! __ThePinData {
369//! __phantom: ::core::marker::PhantomData,
370//! }
371//! }
372//! }
373//! unsafe impl ::pin_init::__internal::PinData for __ThePinData {
374//! type Datee = Foo;
375//! }
376//! #[allow(dead_code)]
377//! struct __Unpin<'__pin> {
378//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
379//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>,
380//! b: Bar<u32>,
381//! }
382//! #[doc(hidden)]
383//! impl<'__pin> ::core::marker::Unpin for Foo
384//! where
385//! __Unpin<'__pin>: ::core::marker::Unpin,
386//! {}
387//! // Since we specified `PinnedDrop` as the argument to `#[pin_data]`, we expect `Foo` to
388//! // implement `PinnedDrop`. Thus we do not need to prevent `Drop` implementations like
389//! // before, instead we implement `Drop` here and delegate to `PinnedDrop`.
390//! impl ::core::ops::Drop for Foo {
391//! fn drop(&mut self) {
392//! // Since we are getting dropped, no one else has a reference to `self` and thus we
393//! // can assume that we never move.
394//! let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) };
395//! // Create the unsafe token that proves that we are inside of a destructor, this
396//! // type is only allowed to be created in a destructor.
397//! let token = unsafe { ::pin_init::__internal::OnlyCallFromDrop::new() };
398//! ::pin_init::PinnedDrop::drop(pinned, token);
399//! }
400//! }
401//! };
402//! ```
403//!
404//! ## `#[pinned_drop]` on `impl PinnedDrop for Foo`
405//!
406//! This macro is used to implement the `PinnedDrop` trait, since that trait is `unsafe` and has an
407//! extra parameter that should not be used at all. The macro hides that parameter.
408//!
409//! Here is the `PinnedDrop` impl for `Foo`:
410//!
411//! ```rust,ignore
412//! #[pinned_drop]
413//! impl PinnedDrop for Foo {
414//! fn drop(self: Pin<&mut Self>) {
415//! println!("{self:p} is getting dropped.");
416//! }
417//! }
418//! ```
419//!
420//! This expands to the following code:
421//!
422//! ```rust,ignore
423//! // `unsafe`, full path and the token parameter are added, everything else stays the same.
424//! unsafe impl ::pin_init::PinnedDrop for Foo {
425//! fn drop(self: Pin<&mut Self>, _: ::pin_init::__internal::OnlyCallFromDrop) {
426//! println!("{self:p} is getting dropped.");
427//! }
428//! }
429//! ```
430//!
431//! ## `pin_init!` on `Foo`
432//!
433//! Since we already took a look at `pin_init!` on `Bar`, this section will only show the expansion
434//! of `pin_init!` on `Foo`:
435//!
436//! ```rust,ignore
437//! let a = 42;
438//! let initializer = pin_init!(Foo {
439//! a,
440//! b <- Bar::new(36),
441//! });
442//! ```
443//!
444//! This expands to the following code:
445//!
446//! ```rust,ignore
447//! let a = 42;
448//! let initializer = {
449//! struct __InitOk;
450//! let data = unsafe {
451//! use ::pin_init::__internal::HasPinData;
452//! Foo::__pin_data()
453//! };
454//! let init = ::pin_init::__internal::PinData::make_closure::<
455//! _,
456//! __InitOk,
457//! ::core::convert::Infallible,
458//! >(data, move |slot| {
459//! {
460//! struct __InitOk;
461//! {
462//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).a), a) };
463//! }
464//! let __a_guard = unsafe {
465//! ::pin_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).a))
466//! };
467//! let init = Bar::new(36);
468//! unsafe { data.b(::core::addr_of_mut!((*slot).b), b)? };
469//! let __b_guard = unsafe {
470//! ::pin_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).b))
471//! };
472//! ::core::mem::forget(__b_guard);
473//! ::core::mem::forget(__a_guard);
474//! #[allow(unreachable_code, clippy::diverging_sub_expression)]
475//! let _ = || {
476//! unsafe {
477//! ::core::ptr::write(
478//! slot,
479//! Foo {
480//! a: ::core::panic!(),
481//! b: ::core::panic!(),
482//! },
483//! );
484//! };
485//! };
486//! }
487//! Ok(__InitOk)
488//! });
489//! let init = move |
490//! slot,
491//! | -> ::core::result::Result<(), ::core::convert::Infallible> {
492//! init(slot).map(|__InitOk| ())
493//! };
494//! let init = unsafe {
495//! ::pin_init::pin_init_from_closure::<_, ::core::convert::Infallible>(init)
496//! };
497//! init
498//! };
499//! ```
500
501#[cfg(kernel)]
502pub use ::macros::paste;
503#[cfg(not(kernel))]
504pub use ::paste::paste;
505
506/// Creates a `unsafe impl<...> PinnedDrop for $type` block.
507///
508/// See [`PinnedDrop`] for more information.
509#[doc(hidden)]
510#[macro_export]
511macro_rules! __pinned_drop {
512 (
513 @impl_sig($($impl_sig:tt)*),
514 @impl_body(
515 $(#[$($attr:tt)*])*
516 fn drop($($sig:tt)*) {
517 $($inner:tt)*
518 }
519 ),
520 ) => {
521 // SAFETY: TODO.
522 unsafe $($impl_sig)* {
523 // Inherit all attributes and the type/ident tokens for the signature.
524 $(#[$($attr)*])*
525 fn drop($($sig)*, _: $crate::__internal::OnlyCallFromDrop) {
526 $($inner)*
527 }
528 }
529 }
530}
531
532/// This macro first parses the struct definition such that it separates pinned and not pinned
533/// fields. Afterwards it declares the struct and implement the `PinData` trait safely.
534#[doc(hidden)]
535#[macro_export]
536macro_rules! __pin_data {
537 // Proc-macro entry point, this is supplied by the proc-macro pre-parsing.
538 (parse_input:
539 @args($($pinned_drop:ident)?),
540 @sig(
541 $(#[$($struct_attr:tt)*])*
542 $vis:vis struct $name:ident
543 $(where $($whr:tt)*)?
544 ),
545 @impl_generics($($impl_generics:tt)*),
546 @ty_generics($($ty_generics:tt)*),
547 @decl_generics($($decl_generics:tt)*),
548 @body({ $($fields:tt)* }),
549 ) => {
550 // We now use token munching to iterate through all of the fields. While doing this we
551 // identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user
552 // wants these to be structurally pinned. The rest of the fields are the
553 // 'not pinned fields'. Additionally we collect all fields, since we need them in the right
554 // order to declare the struct.
555 //
556 // In this call we also put some explaining comments for the parameters.
557 $crate::__pin_data!(find_pinned_fields:
558 // Attributes on the struct itself, these will just be propagated to be put onto the
559 // struct definition.
560 @struct_attrs($(#[$($struct_attr)*])*),
561 // The visibility of the struct.
562 @vis($vis),
563 // The name of the struct.
564 @name($name),
565 // The 'impl generics', the generics that will need to be specified on the struct inside
566 // of an `impl<$ty_generics>` block.
567 @impl_generics($($impl_generics)*),
568 // The 'ty generics', the generics that will need to be specified on the impl blocks.
569 @ty_generics($($ty_generics)*),
570 // The 'decl generics', the generics that need to be specified on the struct
571 // definition.
572 @decl_generics($($decl_generics)*),
573 // The where clause of any impl block and the declaration.
574 @where($($($whr)*)?),
575 // The remaining fields tokens that need to be processed.
576 // We add a `,` at the end to ensure correct parsing.
577 @fields_munch($($fields)* ,),
578 // The pinned fields.
579 @pinned(),
580 // The not pinned fields.
581 @not_pinned(),
582 // All fields.
583 @fields(),
584 // The accumulator containing all attributes already parsed.
585 @accum(),
586 // Contains `yes` or `` to indicate if `#[pin]` was found on the current field.
587 @is_pinned(),
588 // The proc-macro argument, this should be `PinnedDrop` or ``.
589 @pinned_drop($($pinned_drop)?),
590 );
591 };
592 (find_pinned_fields:
593 @struct_attrs($($struct_attrs:tt)*),
594 @vis($vis:vis),
595 @name($name:ident),
596 @impl_generics($($impl_generics:tt)*),
597 @ty_generics($($ty_generics:tt)*),
598 @decl_generics($($decl_generics:tt)*),
599 @where($($whr:tt)*),
600 // We found a PhantomPinned field, this should generally be pinned!
601 @fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*),
602 @pinned($($pinned:tt)*),
603 @not_pinned($($not_pinned:tt)*),
604 @fields($($fields:tt)*),
605 @accum($($accum:tt)*),
606 // This field is not pinned.
607 @is_pinned(),
608 @pinned_drop($($pinned_drop:ident)?),
609 ) => {
610 ::core::compile_error!(concat!(
611 "The field `",
612 stringify!($field),
613 "` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.",
614 ));
615 $crate::__pin_data!(find_pinned_fields:
616 @struct_attrs($($struct_attrs)*),
617 @vis($vis),
618 @name($name),
619 @impl_generics($($impl_generics)*),
620 @ty_generics($($ty_generics)*),
621 @decl_generics($($decl_generics)*),
622 @where($($whr)*),
623 @fields_munch($($rest)*),
624 @pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,),
625 @not_pinned($($not_pinned)*),
626 @fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,),
627 @accum(),
628 @is_pinned(),
629 @pinned_drop($($pinned_drop)?),
630 );
631 };
632 (find_pinned_fields:
633 @struct_attrs($($struct_attrs:tt)*),
634 @vis($vis:vis),
635 @name($name:ident),
636 @impl_generics($($impl_generics:tt)*),
637 @ty_generics($($ty_generics:tt)*),
638 @decl_generics($($decl_generics:tt)*),
639 @where($($whr:tt)*),
640 // We reached the field declaration.
641 @fields_munch($field:ident : $type:ty, $($rest:tt)*),
642 @pinned($($pinned:tt)*),
643 @not_pinned($($not_pinned:tt)*),
644 @fields($($fields:tt)*),
645 @accum($($accum:tt)*),
646 // This field is pinned.
647 @is_pinned(yes),
648 @pinned_drop($($pinned_drop:ident)?),
649 ) => {
650 $crate::__pin_data!(find_pinned_fields:
651 @struct_attrs($($struct_attrs)*),
652 @vis($vis),
653 @name($name),
654 @impl_generics($($impl_generics)*),
655 @ty_generics($($ty_generics)*),
656 @decl_generics($($decl_generics)*),
657 @where($($whr)*),
658 @fields_munch($($rest)*),
659 @pinned($($pinned)* $($accum)* $field: $type,),
660 @not_pinned($($not_pinned)*),
661 @fields($($fields)* $($accum)* $field: $type,),
662 @accum(),
663 @is_pinned(),
664 @pinned_drop($($pinned_drop)?),
665 );
666 };
667 (find_pinned_fields:
668 @struct_attrs($($struct_attrs:tt)*),
669 @vis($vis:vis),
670 @name($name:ident),
671 @impl_generics($($impl_generics:tt)*),
672 @ty_generics($($ty_generics:tt)*),
673 @decl_generics($($decl_generics:tt)*),
674 @where($($whr:tt)*),
675 // We reached the field declaration.
676 @fields_munch($field:ident : $type:ty, $($rest:tt)*),
677 @pinned($($pinned:tt)*),
678 @not_pinned($($not_pinned:tt)*),
679 @fields($($fields:tt)*),
680 @accum($($accum:tt)*),
681 // This field is not pinned.
682 @is_pinned(),
683 @pinned_drop($($pinned_drop:ident)?),
684 ) => {
685 $crate::__pin_data!(find_pinned_fields:
686 @struct_attrs($($struct_attrs)*),
687 @vis($vis),
688 @name($name),
689 @impl_generics($($impl_generics)*),
690 @ty_generics($($ty_generics)*),
691 @decl_generics($($decl_generics)*),
692 @where($($whr)*),
693 @fields_munch($($rest)*),
694 @pinned($($pinned)*),
695 @not_pinned($($not_pinned)* $($accum)* $field: $type,),
696 @fields($($fields)* $($accum)* $field: $type,),
697 @accum(),
698 @is_pinned(),
699 @pinned_drop($($pinned_drop)?),
700 );
701 };
702 (find_pinned_fields:
703 @struct_attrs($($struct_attrs:tt)*),
704 @vis($vis:vis),
705 @name($name:ident),
706 @impl_generics($($impl_generics:tt)*),
707 @ty_generics($($ty_generics:tt)*),
708 @decl_generics($($decl_generics:tt)*),
709 @where($($whr:tt)*),
710 // We found the `#[pin]` attr.
711 @fields_munch(#[pin] $($rest:tt)*),
712 @pinned($($pinned:tt)*),
713 @not_pinned($($not_pinned:tt)*),
714 @fields($($fields:tt)*),
715 @accum($($accum:tt)*),
716 @is_pinned($($is_pinned:ident)?),
717 @pinned_drop($($pinned_drop:ident)?),
718 ) => {
719 $crate::__pin_data!(find_pinned_fields:
720 @struct_attrs($($struct_attrs)*),
721 @vis($vis),
722 @name($name),
723 @impl_generics($($impl_generics)*),
724 @ty_generics($($ty_generics)*),
725 @decl_generics($($decl_generics)*),
726 @where($($whr)*),
727 @fields_munch($($rest)*),
728 // We do not include `#[pin]` in the list of attributes, since it is not actually an
729 // attribute that is defined somewhere.
730 @pinned($($pinned)*),
731 @not_pinned($($not_pinned)*),
732 @fields($($fields)*),
733 @accum($($accum)*),
734 // Set this to `yes`.
735 @is_pinned(yes),
736 @pinned_drop($($pinned_drop)?),
737 );
738 };
739 (find_pinned_fields:
740 @struct_attrs($($struct_attrs:tt)*),
741 @vis($vis:vis),
742 @name($name:ident),
743 @impl_generics($($impl_generics:tt)*),
744 @ty_generics($($ty_generics:tt)*),
745 @decl_generics($($decl_generics:tt)*),
746 @where($($whr:tt)*),
747 // We reached the field declaration with visibility, for simplicity we only munch the
748 // visibility and put it into `$accum`.
749 @fields_munch($fvis:vis $field:ident $($rest:tt)*),
750 @pinned($($pinned:tt)*),
751 @not_pinned($($not_pinned:tt)*),
752 @fields($($fields:tt)*),
753 @accum($($accum:tt)*),
754 @is_pinned($($is_pinned:ident)?),
755 @pinned_drop($($pinned_drop:ident)?),
756 ) => {
757 $crate::__pin_data!(find_pinned_fields:
758 @struct_attrs($($struct_attrs)*),
759 @vis($vis),
760 @name($name),
761 @impl_generics($($impl_generics)*),
762 @ty_generics($($ty_generics)*),
763 @decl_generics($($decl_generics)*),
764 @where($($whr)*),
765 @fields_munch($field $($rest)*),
766 @pinned($($pinned)*),
767 @not_pinned($($not_pinned)*),
768 @fields($($fields)*),
769 @accum($($accum)* $fvis),
770 @is_pinned($($is_pinned)?),
771 @pinned_drop($($pinned_drop)?),
772 );
773 };
774 (find_pinned_fields:
775 @struct_attrs($($struct_attrs:tt)*),
776 @vis($vis:vis),
777 @name($name:ident),
778 @impl_generics($($impl_generics:tt)*),
779 @ty_generics($($ty_generics:tt)*),
780 @decl_generics($($decl_generics:tt)*),
781 @where($($whr:tt)*),
782 // Some other attribute, just put it into `$accum`.
783 @fields_munch(#[$($attr:tt)*] $($rest:tt)*),
784 @pinned($($pinned:tt)*),
785 @not_pinned($($not_pinned:tt)*),
786 @fields($($fields:tt)*),
787 @accum($($accum:tt)*),
788 @is_pinned($($is_pinned:ident)?),
789 @pinned_drop($($pinned_drop:ident)?),
790 ) => {
791 $crate::__pin_data!(find_pinned_fields:
792 @struct_attrs($($struct_attrs)*),
793 @vis($vis),
794 @name($name),
795 @impl_generics($($impl_generics)*),
796 @ty_generics($($ty_generics)*),
797 @decl_generics($($decl_generics)*),
798 @where($($whr)*),
799 @fields_munch($($rest)*),
800 @pinned($($pinned)*),
801 @not_pinned($($not_pinned)*),
802 @fields($($fields)*),
803 @accum($($accum)* #[$($attr)*]),
804 @is_pinned($($is_pinned)?),
805 @pinned_drop($($pinned_drop)?),
806 );
807 };
808 (find_pinned_fields:
809 @struct_attrs($($struct_attrs:tt)*),
810 @vis($vis:vis),
811 @name($name:ident),
812 @impl_generics($($impl_generics:tt)*),
813 @ty_generics($($ty_generics:tt)*),
814 @decl_generics($($decl_generics:tt)*),
815 @where($($whr:tt)*),
816 // We reached the end of the fields, plus an optional additional comma, since we added one
817 // before and the user is also allowed to put a trailing comma.
818 @fields_munch($(,)?),
819 @pinned($($pinned:tt)*),
820 @not_pinned($($not_pinned:tt)*),
821 @fields($($fields:tt)*),
822 @accum(),
823 @is_pinned(),
824 @pinned_drop($($pinned_drop:ident)?),
825 ) => {
826 // Declare the struct with all fields in the correct order.
827 $($struct_attrs)*
828 $vis struct $name <$($decl_generics)*>
829 where $($whr)*
830 {
831 $($fields)*
832 }
833
834 // We put the rest into this const item, because it then will not be accessible to anything
835 // outside.
836 const _: () = {
837 // We declare this struct which will host all of the projection function for our type.
838 // it will be invariant over all generic parameters which are inherited from the
839 // struct.
840 $vis struct __ThePinData<$($impl_generics)*>
841 where $($whr)*
842 {
843 __phantom: ::core::marker::PhantomData<
844 fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
845 >,
846 }
847
848 impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*>
849 where $($whr)*
850 {
851 fn clone(&self) -> Self { *self }
852 }
853
854 impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*>
855 where $($whr)*
856 {}
857
858 // Make all projection functions.
859 $crate::__pin_data!(make_pin_data:
860 @pin_data(__ThePinData),
861 @impl_generics($($impl_generics)*),
862 @ty_generics($($ty_generics)*),
863 @where($($whr)*),
864 @pinned($($pinned)*),
865 @not_pinned($($not_pinned)*),
866 );
867
868 // SAFETY: We have added the correct projection functions above to `__ThePinData` and
869 // we also use the least restrictive generics possible.
870 unsafe impl<$($impl_generics)*>
871 $crate::__internal::HasPinData for $name<$($ty_generics)*>
872 where $($whr)*
873 {
874 type PinData = __ThePinData<$($ty_generics)*>;
875
876 unsafe fn __pin_data() -> Self::PinData {
877 __ThePinData { __phantom: ::core::marker::PhantomData }
878 }
879 }
880
881 // SAFETY: TODO.
882 unsafe impl<$($impl_generics)*>
883 $crate::__internal::PinData for __ThePinData<$($ty_generics)*>
884 where $($whr)*
885 {
886 type Datee = $name<$($ty_generics)*>;
887 }
888
889 // This struct will be used for the unpin analysis. Since only structurally pinned
890 // fields are relevant whether the struct should implement `Unpin`.
891 #[allow(dead_code)]
892 struct __Unpin <'__pin, $($impl_generics)*>
893 where $($whr)*
894 {
895 __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
896 __phantom: ::core::marker::PhantomData<
897 fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
898 >,
899 // Only the pinned fields.
900 $($pinned)*
901 }
902
903 #[doc(hidden)]
904 impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*>
905 where
906 __Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin,
907 $($whr)*
908 {}
909
910 // We need to disallow normal `Drop` implementation, the exact behavior depends on
911 // whether `PinnedDrop` was specified as the parameter.
912 $crate::__pin_data!(drop_prevention:
913 @name($name),
914 @impl_generics($($impl_generics)*),
915 @ty_generics($($ty_generics)*),
916 @where($($whr)*),
917 @pinned_drop($($pinned_drop)?),
918 );
919 };
920 };
921 // When no `PinnedDrop` was specified, then we have to prevent implementing drop.
922 (drop_prevention:
923 @name($name:ident),
924 @impl_generics($($impl_generics:tt)*),
925 @ty_generics($($ty_generics:tt)*),
926 @where($($whr:tt)*),
927 @pinned_drop(),
928 ) => {
929 // We prevent this by creating a trait that will be implemented for all types implementing
930 // `Drop`. Additionally we will implement this trait for the struct leading to a conflict,
931 // if it also implements `Drop`
932 trait MustNotImplDrop {}
933 #[expect(drop_bounds)]
934 impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
935 impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*>
936 where $($whr)* {}
937 // We also take care to prevent users from writing a useless `PinnedDrop` implementation.
938 // They might implement `PinnedDrop` correctly for the struct, but forget to give
939 // `PinnedDrop` as the parameter to `#[pin_data]`.
940 #[expect(non_camel_case_types)]
941 trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {}
942 impl<T: $crate::PinnedDrop>
943 UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {}
944 impl<$($impl_generics)*>
945 UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for $name<$($ty_generics)*>
946 where $($whr)* {}
947 };
948 // When `PinnedDrop` was specified we just implement `Drop` and delegate.
949 (drop_prevention:
950 @name($name:ident),
951 @impl_generics($($impl_generics:tt)*),
952 @ty_generics($($ty_generics:tt)*),
953 @where($($whr:tt)*),
954 @pinned_drop(PinnedDrop),
955 ) => {
956 impl<$($impl_generics)*> ::core::ops::Drop for $name<$($ty_generics)*>
957 where $($whr)*
958 {
959 fn drop(&mut self) {
960 // SAFETY: Since this is a destructor, `self` will not move after this function
961 // terminates, since it is inaccessible.
962 let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) };
963 // SAFETY: Since this is a drop function, we can create this token to call the
964 // pinned destructor of this type.
965 let token = unsafe { $crate::__internal::OnlyCallFromDrop::new() };
966 $crate::PinnedDrop::drop(pinned, token);
967 }
968 }
969 };
970 // If some other parameter was specified, we emit a readable error.
971 (drop_prevention:
972 @name($name:ident),
973 @impl_generics($($impl_generics:tt)*),
974 @ty_generics($($ty_generics:tt)*),
975 @where($($whr:tt)*),
976 @pinned_drop($($rest:tt)*),
977 ) => {
978 compile_error!(
979 "Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.",
980 stringify!($($rest)*),
981 );
982 };
983 (make_pin_data:
984 @pin_data($pin_data:ident),
985 @impl_generics($($impl_generics:tt)*),
986 @ty_generics($($ty_generics:tt)*),
987 @where($($whr:tt)*),
988 @pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?),
989 @not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?),
990 ) => {
991 // For every field, we create a projection function according to its projection type. If a
992 // field is structurally pinned, then it must be initialized via `PinInit`, if it is not
993 // structurally pinned, then it can be initialized via `Init`.
994 //
995 // The functions are `unsafe` to prevent accidentally calling them.
996 #[allow(dead_code)]
997 #[expect(clippy::missing_safety_doc)]
998 impl<$($impl_generics)*> $pin_data<$($ty_generics)*>
999 where $($whr)*
1000 {
1001 $(
1002 $(#[$($p_attr)*])*
1003 $pvis unsafe fn $p_field<E>(
1004 self,
1005 slot: *mut $p_type,
1006 init: impl $crate::PinInit<$p_type, E>,
1007 ) -> ::core::result::Result<(), E> {
1008 // SAFETY: TODO.
1009 unsafe { $crate::PinInit::__pinned_init(init, slot) }
1010 }
1011 )*
1012 $(
1013 $(#[$($attr)*])*
1014 $fvis unsafe fn $field<E>(
1015 self,
1016 slot: *mut $type,
1017 init: impl $crate::Init<$type, E>,
1018 ) -> ::core::result::Result<(), E> {
1019 // SAFETY: TODO.
1020 unsafe { $crate::Init::__init(init, slot) }
1021 }
1022 )*
1023 }
1024 };
1025}
1026
1027/// The internal init macro. Do not call manually!
1028///
1029/// This is called by the `{try_}{pin_}init!` macros with various inputs.
1030///
1031/// This macro has multiple internal call configurations, these are always the very first ident:
1032/// - nothing: this is the base case and called by the `{try_}{pin_}init!` macros.
1033/// - `with_update_parsed`: when the `..Zeroable::zeroed()` syntax has been handled.
1034/// - `init_slot`: recursively creates the code that initializes all fields in `slot`.
1035/// - `make_initializer`: recursively create the struct initializer that guarantees that every
1036/// field has been initialized exactly once.
1037#[doc(hidden)]
1038#[macro_export]
1039macro_rules! __init_internal {
1040 (
1041 @this($($this:ident)?),
1042 @typ($t:path),
1043 @fields($($fields:tt)*),
1044 @error($err:ty),
1045 // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
1046 // case.
1047 @data($data:ident, $($use_data:ident)?),
1048 // `HasPinData` or `HasInitData`.
1049 @has_data($has_data:ident, $get_data:ident),
1050 // `pin_init_from_closure` or `init_from_closure`.
1051 @construct_closure($construct_closure:ident),
1052 @munch_fields(),
1053 ) => {
1054 $crate::__init_internal!(with_update_parsed:
1055 @this($($this)?),
1056 @typ($t),
1057 @fields($($fields)*),
1058 @error($err),
1059 @data($data, $($use_data)?),
1060 @has_data($has_data, $get_data),
1061 @construct_closure($construct_closure),
1062 @zeroed(), // Nothing means default behavior.
1063 )
1064 };
1065 (
1066 @this($($this:ident)?),
1067 @typ($t:path),
1068 @fields($($fields:tt)*),
1069 @error($err:ty),
1070 // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
1071 // case.
1072 @data($data:ident, $($use_data:ident)?),
1073 // `HasPinData` or `HasInitData`.
1074 @has_data($has_data:ident, $get_data:ident),
1075 // `pin_init_from_closure` or `init_from_closure`.
1076 @construct_closure($construct_closure:ident),
1077 @munch_fields(..Zeroable::zeroed()),
1078 ) => {
1079 $crate::__init_internal!(with_update_parsed:
1080 @this($($this)?),
1081 @typ($t),
1082 @fields($($fields)*),
1083 @error($err),
1084 @data($data, $($use_data)?),
1085 @has_data($has_data, $get_data),
1086 @construct_closure($construct_closure),
1087 @zeroed(()), // `()` means zero all fields not mentioned.
1088 )
1089 };
1090 (
1091 @this($($this:ident)?),
1092 @typ($t:path),
1093 @fields($($fields:tt)*),
1094 @error($err:ty),
1095 // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
1096 // case.
1097 @data($data:ident, $($use_data:ident)?),
1098 // `HasPinData` or `HasInitData`.
1099 @has_data($has_data:ident, $get_data:ident),
1100 // `pin_init_from_closure` or `init_from_closure`.
1101 @construct_closure($construct_closure:ident),
1102 @munch_fields($ignore:tt $($rest:tt)*),
1103 ) => {
1104 $crate::__init_internal!(
1105 @this($($this)?),
1106 @typ($t),
1107 @fields($($fields)*),
1108 @error($err),
1109 @data($data, $($use_data)?),
1110 @has_data($has_data, $get_data),
1111 @construct_closure($construct_closure),
1112 @munch_fields($($rest)*),
1113 )
1114 };
1115 (with_update_parsed:
1116 @this($($this:ident)?),
1117 @typ($t:path),
1118 @fields($($fields:tt)*),
1119 @error($err:ty),
1120 // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
1121 // case.
1122 @data($data:ident, $($use_data:ident)?),
1123 // `HasPinData` or `HasInitData`.
1124 @has_data($has_data:ident, $get_data:ident),
1125 // `pin_init_from_closure` or `init_from_closure`.
1126 @construct_closure($construct_closure:ident),
1127 @zeroed($($init_zeroed:expr)?),
1128 ) => {{
1129 // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
1130 // type and shadow it later when we insert the arbitrary user code. That way there will be
1131 // no possibility of returning without `unsafe`.
1132 struct __InitOk;
1133 // Get the data about fields from the supplied type.
1134 //
1135 // SAFETY: TODO.
1136 let data = unsafe {
1137 use $crate::__internal::$has_data;
1138 // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
1139 // information that is associated to already parsed fragments, so a path fragment
1140 // cannot be used in this position. Doing the retokenization results in valid rust
1141 // code.
1142 $crate::macros::paste!($t::$get_data())
1143 };
1144 // Ensure that `data` really is of type `$data` and help with type inference:
1145 let init = $crate::__internal::$data::make_closure::<_, __InitOk, $err>(
1146 data,
1147 move |slot| {
1148 {
1149 // Shadow the structure so it cannot be used to return early.
1150 struct __InitOk;
1151 // If `$init_zeroed` is present we should zero the slot now and not emit an
1152 // error when fields are missing (since they will be zeroed). We also have to
1153 // check that the type actually implements `Zeroable`.
1154 $({
1155 fn assert_zeroable<T: $crate::Zeroable>(_: *mut T) {}
1156 // Ensure that the struct is indeed `Zeroable`.
1157 assert_zeroable(slot);
1158 // SAFETY: The type implements `Zeroable` by the check above.
1159 unsafe { ::core::ptr::write_bytes(slot, 0, 1) };
1160 $init_zeroed // This will be `()` if set.
1161 })?
1162 // Create the `this` so it can be referenced by the user inside of the
1163 // expressions creating the individual fields.
1164 $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
1165 // Initialize every field.
1166 $crate::__init_internal!(init_slot($($use_data)?):
1167 @data(data),
1168 @slot(slot),
1169 @guards(),
1170 @munch_fields($($fields)*,),
1171 );
1172 // We use unreachable code to ensure that all fields have been mentioned exactly
1173 // once, this struct initializer will still be type-checked and complain with a
1174 // very natural error message if a field is forgotten/mentioned more than once.
1175 #[allow(unreachable_code, clippy::diverging_sub_expression)]
1176 let _ = || {
1177 $crate::__init_internal!(make_initializer:
1178 @slot(slot),
1179 @type_name($t),
1180 @munch_fields($($fields)*,),
1181 @acc(),
1182 );
1183 };
1184 }
1185 Ok(__InitOk)
1186 }
1187 );
1188 let init = move |slot| -> ::core::result::Result<(), $err> {
1189 init(slot).map(|__InitOk| ())
1190 };
1191 // SAFETY: TODO.
1192 let init = unsafe { $crate::$construct_closure::<_, $err>(init) };
1193 init
1194 }};
1195 (init_slot($($use_data:ident)?):
1196 @data($data:ident),
1197 @slot($slot:ident),
1198 @guards($($guards:ident,)*),
1199 @munch_fields($(..Zeroable::zeroed())? $(,)?),
1200 ) => {
1201 // Endpoint of munching, no fields are left. If execution reaches this point, all fields
1202 // have been initialized. Therefore we can now dismiss the guards by forgetting them.
1203 $(::core::mem::forget($guards);)*
1204 };
1205 (init_slot($use_data:ident): // `use_data` is present, so we use the `data` to init fields.
1206 @data($data:ident),
1207 @slot($slot:ident),
1208 @guards($($guards:ident,)*),
1209 // In-place initialization syntax.
1210 @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
1211 ) => {
1212 let init = $val;
1213 // Call the initializer.
1214 //
1215 // SAFETY: `slot` is valid, because we are inside of an initializer closure, we
1216 // return when an error/panic occurs.
1217 // We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`.
1218 unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), init)? };
1219 // Create the drop guard:
1220 //
1221 // We rely on macro hygiene to make it impossible for users to access this local variable.
1222 // We use `paste!` to create new hygiene for `$field`.
1223 $crate::macros::paste! {
1224 // SAFETY: We forget the guard later when initialization has succeeded.
1225 let [< __ $field _guard >] = unsafe {
1226 $crate::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
1227 };
1228
1229 $crate::__init_internal!(init_slot($use_data):
1230 @data($data),
1231 @slot($slot),
1232 @guards([< __ $field _guard >], $($guards,)*),
1233 @munch_fields($($rest)*),
1234 );
1235 }
1236 };
1237 (init_slot(): // No `use_data`, so we use `Init::__init` directly.
1238 @data($data:ident),
1239 @slot($slot:ident),
1240 @guards($($guards:ident,)*),
1241 // In-place initialization syntax.
1242 @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
1243 ) => {
1244 let init = $val;
1245 // Call the initializer.
1246 //
1247 // SAFETY: `slot` is valid, because we are inside of an initializer closure, we
1248 // return when an error/panic occurs.
1249 unsafe { $crate::Init::__init(init, ::core::ptr::addr_of_mut!((*$slot).$field))? };
1250 // Create the drop guard:
1251 //
1252 // We rely on macro hygiene to make it impossible for users to access this local variable.
1253 // We use `paste!` to create new hygiene for `$field`.
1254 $crate::macros::paste! {
1255 // SAFETY: We forget the guard later when initialization has succeeded.
1256 let [< __ $field _guard >] = unsafe {
1257 $crate::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
1258 };
1259
1260 $crate::__init_internal!(init_slot():
1261 @data($data),
1262 @slot($slot),
1263 @guards([< __ $field _guard >], $($guards,)*),
1264 @munch_fields($($rest)*),
1265 );
1266 }
1267 };
1268 (init_slot($($use_data:ident)?):
1269 @data($data:ident),
1270 @slot($slot:ident),
1271 @guards($($guards:ident,)*),
1272 // Init by-value.
1273 @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
1274 ) => {
1275 {
1276 $(let $field = $val;)?
1277 // Initialize the field.
1278 //
1279 // SAFETY: The memory at `slot` is uninitialized.
1280 unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
1281 }
1282 // Create the drop guard:
1283 //
1284 // We rely on macro hygiene to make it impossible for users to access this local variable.
1285 // We use `paste!` to create new hygiene for `$field`.
1286 $crate::macros::paste! {
1287 // SAFETY: We forget the guard later when initialization has succeeded.
1288 let [< __ $field _guard >] = unsafe {
1289 $crate::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
1290 };
1291
1292 $crate::__init_internal!(init_slot($($use_data)?):
1293 @data($data),
1294 @slot($slot),
1295 @guards([< __ $field _guard >], $($guards,)*),
1296 @munch_fields($($rest)*),
1297 );
1298 }
1299 };
1300 (make_initializer:
1301 @slot($slot:ident),
1302 @type_name($t:path),
1303 @munch_fields(..Zeroable::zeroed() $(,)?),
1304 @acc($($acc:tt)*),
1305 ) => {
1306 // Endpoint, nothing more to munch, create the initializer. Since the users specified
1307 // `..Zeroable::zeroed()`, the slot will already have been zeroed and all field that have
1308 // not been overwritten are thus zero and initialized. We still check that all fields are
1309 // actually accessible by using the struct update syntax ourselves.
1310 // We are inside of a closure that is never executed and thus we can abuse `slot` to
1311 // get the correct type inference here:
1312 #[allow(unused_assignments)]
1313 unsafe {
1314 let mut zeroed = ::core::mem::zeroed();
1315 // We have to use type inference here to make zeroed have the correct type. This does
1316 // not get executed, so it has no effect.
1317 ::core::ptr::write($slot, zeroed);
1318 zeroed = ::core::mem::zeroed();
1319 // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
1320 // information that is associated to already parsed fragments, so a path fragment
1321 // cannot be used in this position. Doing the retokenization results in valid rust
1322 // code.
1323 $crate::macros::paste!(
1324 ::core::ptr::write($slot, $t {
1325 $($acc)*
1326 ..zeroed
1327 });
1328 );
1329 }
1330 };
1331 (make_initializer:
1332 @slot($slot:ident),
1333 @type_name($t:path),
1334 @munch_fields($(,)?),
1335 @acc($($acc:tt)*),
1336 ) => {
1337 // Endpoint, nothing more to munch, create the initializer.
1338 // Since we are in the closure that is never called, this will never get executed.
1339 // We abuse `slot` to get the correct type inference here:
1340 //
1341 // SAFETY: TODO.
1342 unsafe {
1343 // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
1344 // information that is associated to already parsed fragments, so a path fragment
1345 // cannot be used in this position. Doing the retokenization results in valid rust
1346 // code.
1347 $crate::macros::paste!(
1348 ::core::ptr::write($slot, $t {
1349 $($acc)*
1350 });
1351 );
1352 }
1353 };
1354 (make_initializer:
1355 @slot($slot:ident),
1356 @type_name($t:path),
1357 @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
1358 @acc($($acc:tt)*),
1359 ) => {
1360 $crate::__init_internal!(make_initializer:
1361 @slot($slot),
1362 @type_name($t),
1363 @munch_fields($($rest)*),
1364 @acc($($acc)* $field: ::core::panic!(),),
1365 );
1366 };
1367 (make_initializer:
1368 @slot($slot:ident),
1369 @type_name($t:path),
1370 @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
1371 @acc($($acc:tt)*),
1372 ) => {
1373 $crate::__init_internal!(make_initializer:
1374 @slot($slot),
1375 @type_name($t),
1376 @munch_fields($($rest)*),
1377 @acc($($acc)* $field: ::core::panic!(),),
1378 );
1379 };
1380}
1381
1382#[doc(hidden)]
1383#[macro_export]
1384macro_rules! __derive_zeroable {
1385 (parse_input:
1386 @sig(
1387 $(#[$($struct_attr:tt)*])*
1388 $vis:vis struct $name:ident
1389 $(where $($whr:tt)*)?
1390 ),
1391 @impl_generics($($impl_generics:tt)*),
1392 @ty_generics($($ty_generics:tt)*),
1393 @body({
1394 $(
1395 $(#[$($field_attr:tt)*])*
1396 $field:ident : $field_ty:ty
1397 ),* $(,)?
1398 }),
1399 ) => {
1400 // SAFETY: Every field type implements `Zeroable` and padding bytes may be zero.
1401 #[automatically_derived]
1402 unsafe impl<$($impl_generics)*> $crate::Zeroable for $name<$($ty_generics)*>
1403 where
1404 $($($whr)*)?
1405 {}
1406 const _: () = {
1407 fn assert_zeroable<T: ?::core::marker::Sized + $crate::Zeroable>() {}
1408 fn ensure_zeroable<$($impl_generics)*>()
1409 where $($($whr)*)?
1410 {
1411 $(assert_zeroable::<$field_ty>();)*
1412 }
1413 };
1414 };
1415}