1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
// SPDX-License-Identifier: GPL-2.0
//! Atomic primitives.
//!
//! These primitives have the same semantics as their C counterparts: and the precise definitions of
//! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the
//! only model for Rust code in kernel, and Rust's own atomics should be avoided.
//!
//! # Data races
//!
//! [`LKMM`] atomics have different rules regarding data races:
//!
//! - A normal write from C side is treated as an atomic write if
//! CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y.
//! - Mixed-size atomic accesses don't cause data races.
//!
//! [`LKMM`]: srctree/tools/memory-model/
mod internal;
pub mod ordering;
mod predefine;
pub use internal::AtomicImpl;
pub use ordering::{Acquire, Full, Relaxed, Release};
use crate::build_error;
use internal::{AtomicArithmeticOps, AtomicBasicOps, AtomicExchangeOps, AtomicRepr};
use ordering::OrderingType;
/// A memory location which can be safely modified from multiple execution contexts.
///
/// This has the same size, alignment and bit validity as the underlying type `T`. And it disables
/// niche optimization for the same reason as [`UnsafeCell`].
///
/// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel
/// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding
/// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and
/// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations]
/// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`,
/// `smp_load_acquire()` and `smp_store_release()`).
///
/// # Invariants
///
/// `self.0` is a valid `T`.
///
/// [`UnsafeCell`]: core::cell::UnsafeCell
/// [LKMM]: srctree/tools/memory-model/
/// [C-side atomic operations]: srctree/Documentation/atomic_t.txt
#[repr(transparent)]
pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>);
// SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic.
unsafe impl<T: AtomicType> Sync for Atomic<T> {}
/// Types that support basic atomic operations.
///
/// # Round-trip transmutability
///
/// `T` is round-trip transmutable to `U` if and only if both of these properties hold:
///
/// - Any valid bit pattern for `T` is also a valid bit pattern for `U`.
/// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again
/// yields a value that is in all aspects equivalent to the original value.
///
/// # Safety
///
/// - [`Self`] must have the same size and alignment as [`Self::Repr`].
/// - [`Self`] must be [round-trip transmutable] to [`Self::Repr`].
///
/// Note that this is more relaxed than requiring the bi-directional transmutability (i.e.
/// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic
/// variables over unit-only enums, see [Examples].
///
/// # Limitations
///
/// Because C primitives are used to implement the atomic operations, and a C function requires a
/// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C
/// surface, only types with all the bits initialized can be passed. As a result, types like `(u8,
/// u16)` (padding bytes are uninitialized) are currently not supported.
///
/// # Examples
///
/// A unit-only enum that implements [`AtomicType`]:
///
/// ```
/// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed};
///
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// #[repr(i32)]
/// enum State {
/// Uninit = 0,
/// Working = 1,
/// Done = 2,
/// };
///
/// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip
/// // transmutable to `i32`.
/// unsafe impl AtomicType for State {
/// type Repr = i32;
/// }
///
/// let s = Atomic::new(State::Uninit);
///
/// assert_eq!(State::Uninit, s.load(Relaxed));
/// ```
/// [`transmute()`]: core::mem::transmute
/// [round-trip transmutable]: AtomicType#round-trip-transmutability
/// [Examples]: AtomicType#examples
pub unsafe trait AtomicType: Sized + Send + Copy {
/// The backing atomic implementation type.
type Repr: AtomicImpl;
}
/// Types that support atomic add operations.
///
/// # Safety
///
// TODO: Properly defines `wrapping_add` in the following comment.
/// `wrapping_add` any value of type `Self::Repr::Delta` obtained by [`Self::rhs_into_delta()`] to
/// any value of type `Self::Repr` obtained through transmuting a value of type `Self` to must
/// yield a value with a bit pattern also valid for `Self`.
pub unsafe trait AtomicAdd<Rhs = Self>: AtomicType {
/// Converts `Rhs` into the `Delta` type of the atomic implementation.
fn rhs_into_delta(rhs: Rhs) -> <Self::Repr as AtomicImpl>::Delta;
}
#[inline(always)]
const fn into_repr<T: AtomicType>(v: T) -> T::Repr {
// SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to
// `T::Repr`, therefore the transmute operation is sound.
unsafe { core::mem::transmute_copy(&v) }
}
/// # Safety
///
/// `r` must be a valid bit pattern of `T`.
#[inline(always)]
const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T {
// SAFETY: Per the safety requirement of the function, the transmute operation is sound.
unsafe { core::mem::transmute_copy(&r) }
}
impl<T: AtomicType> Atomic<T> {
/// Creates a new atomic `T`.
pub const fn new(v: T) -> Self {
// INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`.
Self(AtomicRepr::new(into_repr(v)))
}
/// Creates a reference to an atomic `T` from a pointer of `T`.
///
/// This usually is used when communicating with C side or manipulating a C struct, see
/// examples below.
///
/// # Safety
///
/// - `ptr` is aligned to `align_of::<T>()`.
/// - `ptr` is valid for reads and writes for `'a`.
/// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined
/// by [`LKMM`]) against atomic operations on the returned reference. Note that if all other
/// accesses are atomic, then this safety requirement is trivially fulfilled.
///
/// [`LKMM`]: srctree/tools/memory-model
///
/// # Examples
///
/// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can
/// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or
/// `WRITE_ONCE()`/`smp_store_release()` in C side:
///
/// ```
/// # use kernel::types::Opaque;
/// use kernel::sync::atomic::{Atomic, Relaxed, Release};
///
/// // Assume there is a C struct `foo`.
/// mod cbindings {
/// #[repr(C)]
/// pub(crate) struct foo {
/// pub(crate) a: i32,
/// pub(crate) b: i32
/// }
/// }
///
/// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 });
///
/// // struct foo *foo_ptr = ..;
/// let foo_ptr = tmp.get();
///
/// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds.
/// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a };
///
/// // a = READ_ONCE(foo_ptr->a);
/// //
/// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no
/// // data race.
/// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed);
/// # assert_eq!(a, 1);
///
/// // smp_store_release(&foo_ptr->a, 2);
/// //
/// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so
/// // no data race.
/// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release);
/// ```
pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self
where
T: Sync,
{
// CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity.
// SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will
// live long enough. It's safe to return a `&Atomic<T>` because function safety requirement
// guarantees other accesses won't cause data races.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a pointer to the underlying atomic `T`.
///
/// Note that use of the return pointer must not cause data races defined by [`LKMM`].
///
/// # Guarantees
///
/// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]).
///
/// [`LKMM`]: srctree/tools/memory-model
/// [`align_of::<T>()`]: core::mem::align_of
pub const fn as_ptr(&self) -> *mut T {
// GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()`
// must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee
// of `AtomicType`, it's a valid and properly aligned pointer of `T`.
self.0.as_ptr().cast()
}
/// Returns a mutable reference to the underlying atomic `T`.
///
/// This is safe because the mutable reference of the atomic `T` guarantees exclusive access.
pub fn get_mut(&mut self) -> &mut T {
// CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of
// `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting
// result is a valid pointer of `T`.
// SAFETY: The pointer is valid per the CAST comment above, and the mutable reference
// guarantees exclusive access.
unsafe { &mut *self.0.as_ptr().cast() }
}
}
impl<T: AtomicType> Atomic<T>
where
T::Repr: AtomicBasicOps,
{
/// Loads the value from the atomic `T`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Relaxed};
///
/// let x = Atomic::new(42i32);
///
/// assert_eq!(42, x.load(Relaxed));
///
/// let x = Atomic::new(42i64);
///
/// assert_eq!(42, x.load(Relaxed));
/// ```
#[doc(alias("atomic_read", "atomic64_read"))]
#[inline(always)]
pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T {
let v = {
match Ordering::TYPE {
OrderingType::Relaxed => T::Repr::atomic_read(&self.0),
OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0),
_ => build_error!("Wrong ordering"),
}
};
// SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants.
unsafe { from_repr(v) }
}
/// Stores a value to the atomic `T`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Relaxed};
///
/// let x = Atomic::new(42i32);
///
/// assert_eq!(42, x.load(Relaxed));
///
/// x.store(43, Relaxed);
///
/// assert_eq!(43, x.load(Relaxed));
/// ```
#[doc(alias("atomic_set", "atomic64_set"))]
#[inline(always)]
pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) {
let v = into_repr(v);
// INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`.
match Ordering::TYPE {
OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v),
OrderingType::Release => T::Repr::atomic_set_release(&self.0, v),
_ => build_error!("Wrong ordering"),
}
}
}
impl<T: AtomicType> Atomic<T>
where
T::Repr: AtomicExchangeOps,
{
/// Atomic exchange.
///
/// Atomically updates `*self` to `v` and returns the old value of `*self`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Acquire, Relaxed};
///
/// let x = Atomic::new(42);
///
/// assert_eq!(42, x.xchg(52, Acquire));
/// assert_eq!(52, x.load(Relaxed));
/// ```
#[doc(alias("atomic_xchg", "atomic64_xchg", "swap"))]
#[inline(always)]
pub fn xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T {
let v = into_repr(v);
// INVARIANT: `self.0` is a valid `T` after `atomic_xchg*()` because `v` is transmutable to
// `T`.
let ret = {
match Ordering::TYPE {
OrderingType::Full => T::Repr::atomic_xchg(&self.0, v),
OrderingType::Acquire => T::Repr::atomic_xchg_acquire(&self.0, v),
OrderingType::Release => T::Repr::atomic_xchg_release(&self.0, v),
OrderingType::Relaxed => T::Repr::atomic_xchg_relaxed(&self.0, v),
}
};
// SAFETY: `ret` comes from reading `*self`, which is a valid `T` per type invariants.
unsafe { from_repr(ret) }
}
/// Atomic compare and exchange.
///
/// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
/// modified.
///
/// Compare: The comparison is done via the byte level comparison between `*self` and `old`.
///
/// Ordering: When succeeds, provides the corresponding ordering as the `Ordering` type
/// parameter indicates, and a failed one doesn't provide any ordering, the load part of a
/// failed cmpxchg is a [`Relaxed`] load.
///
/// Returns `Ok(value)` if cmpxchg succeeds, and `value` is guaranteed to be equal to `old`,
/// otherwise returns `Err(value)`, and `value` is the current value of `*self`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Full, Relaxed};
///
/// let x = Atomic::new(42);
///
/// // Checks whether cmpxchg succeeded.
/// let success = x.cmpxchg(52, 64, Relaxed).is_ok();
/// # assert!(!success);
///
/// // Checks whether cmpxchg failed.
/// let failure = x.cmpxchg(52, 64, Relaxed).is_err();
/// # assert!(failure);
///
/// // Uses the old value if failed, probably re-try cmpxchg.
/// match x.cmpxchg(52, 64, Relaxed) {
/// Ok(_) => { },
/// Err(old) => {
/// // do something with `old`.
/// # assert_eq!(old, 42);
/// }
/// }
///
/// // Uses the latest value regardlessly, same as atomic_cmpxchg() in C.
/// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
/// # assert_eq!(42, latest);
/// assert_eq!(64, x.load(Relaxed));
/// ```
///
/// [`Relaxed`]: ordering::Relaxed
#[doc(alias(
"atomic_cmpxchg",
"atomic64_cmpxchg",
"atomic_try_cmpxchg",
"atomic64_try_cmpxchg",
"compare_exchange"
))]
#[inline(always)]
pub fn cmpxchg<Ordering: ordering::Ordering>(
&self,
mut old: T,
new: T,
o: Ordering,
) -> Result<T, T> {
// Note on code generation:
//
// try_cmpxchg() is used to implement cmpxchg(), and if the helper functions are inlined,
// the compiler is able to figure out that branch is not needed if the users don't care
// about whether the operation succeeds or not. One exception is on x86, due to commit
// 44fe84459faf ("locking/atomic: Fix atomic_try_cmpxchg() semantics"), the
// atomic_try_cmpxchg() on x86 has a branch even if the caller doesn't care about the
// success of cmpxchg and only wants to use the old value. For example, for code like:
//
// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
//
// It will still generate code:
//
// movl $0x40, %ecx
// movl $0x34, %eax
// lock
// cmpxchgl %ecx, 0x4(%rsp)
// jne 1f
// 2:
// ...
// 1: movl %eax, %ecx
// jmp 2b
//
// This might be "fixed" by introducing a try_cmpxchg_exclusive() that knows the "*old"
// location in the C function is always safe to write.
if self.try_cmpxchg(&mut old, new, o) {
Ok(old)
} else {
Err(old)
}
}
/// Atomic compare and exchange and returns whether the operation succeeds.
///
/// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
/// modified, `*old` is updated to the current value of `*self`.
///
/// "Compare" and "Ordering" part are the same as [`Atomic::cmpxchg()`].
///
/// Returns `true` means the cmpxchg succeeds otherwise returns `false`.
#[inline(always)]
fn try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool {
let mut tmp = into_repr(*old);
let new = into_repr(new);
// INVARIANT: `self.0` is a valid `T` after `atomic_try_cmpxchg*()` because `new` is
// transmutable to `T`.
let ret = {
match Ordering::TYPE {
OrderingType::Full => T::Repr::atomic_try_cmpxchg(&self.0, &mut tmp, new),
OrderingType::Acquire => {
T::Repr::atomic_try_cmpxchg_acquire(&self.0, &mut tmp, new)
}
OrderingType::Release => {
T::Repr::atomic_try_cmpxchg_release(&self.0, &mut tmp, new)
}
OrderingType::Relaxed => {
T::Repr::atomic_try_cmpxchg_relaxed(&self.0, &mut tmp, new)
}
}
};
// SAFETY: `tmp` comes from reading `*self`, which is a valid `T` per type invariants.
*old = unsafe { from_repr(tmp) };
ret
}
}
impl<T: AtomicType> Atomic<T>
where
T::Repr: AtomicArithmeticOps,
{
/// Atomic add.
///
/// Atomically updates `*self` to `(*self).wrapping_add(v)`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Relaxed};
///
/// let x = Atomic::new(42);
///
/// assert_eq!(42, x.load(Relaxed));
///
/// x.add(12, Relaxed);
///
/// assert_eq!(54, x.load(Relaxed));
/// ```
#[inline(always)]
pub fn add<Rhs>(&self, v: Rhs, _: ordering::Relaxed)
where
T: AtomicAdd<Rhs>,
{
let v = T::rhs_into_delta(v);
// INVARIANT: `self.0` is a valid `T` after `atomic_add()` due to safety requirement of
// `AtomicAdd`.
T::Repr::atomic_add(&self.0, v);
}
/// Atomic fetch and add.
///
/// Atomically updates `*self` to `(*self).wrapping_add(v)`, and returns the value of `*self`
/// before the update.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Acquire, Full, Relaxed};
///
/// let x = Atomic::new(42);
///
/// assert_eq!(42, x.load(Relaxed));
///
/// assert_eq!(54, { x.fetch_add(12, Acquire); x.load(Relaxed) });
///
/// let x = Atomic::new(42);
///
/// assert_eq!(42, x.load(Relaxed));
///
/// assert_eq!(54, { x.fetch_add(12, Full); x.load(Relaxed) } );
/// ```
#[inline(always)]
pub fn fetch_add<Rhs, Ordering: ordering::Ordering>(&self, v: Rhs, _: Ordering) -> T
where
T: AtomicAdd<Rhs>,
{
let v = T::rhs_into_delta(v);
// INVARIANT: `self.0` is a valid `T` after `atomic_fetch_add*()` due to safety requirement
// of `AtomicAdd`.
let ret = {
match Ordering::TYPE {
OrderingType::Full => T::Repr::atomic_fetch_add(&self.0, v),
OrderingType::Acquire => T::Repr::atomic_fetch_add_acquire(&self.0, v),
OrderingType::Release => T::Repr::atomic_fetch_add_release(&self.0, v),
OrderingType::Relaxed => T::Repr::atomic_fetch_add_relaxed(&self.0, v),
}
};
// SAFETY: `ret` comes from reading `self.0`, which is a valid `T` per type invariants.
unsafe { from_repr(ret) }
}
}