1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
// SPDX-License-Identifier: GPL-2.0
// SPDX-FileCopyrightText: Copyright 2025 Collabora ltd.
//! This module provides types like [`Registration`] and
//! [`ThreadedRegistration`], which allow users to register handlers for a given
//! IRQ line.
use core::marker::PhantomPinned;
use crate::alloc::Allocator;
use crate::device::{Bound, Device};
use crate::devres::Devres;
use crate::error::to_result;
use crate::irq::flags::Flags;
use crate::prelude::*;
use crate::str::CStr;
use crate::sync::Arc;
/// The value that can be returned from a [`Handler`] or a [`ThreadedHandler`].
#[repr(u32)]
pub enum IrqReturn {
/// The interrupt was not from this device or was not handled.
None = bindings::irqreturn_IRQ_NONE,
/// The interrupt was handled by this device.
Handled = bindings::irqreturn_IRQ_HANDLED,
}
/// Callbacks for an IRQ handler.
pub trait Handler: Sync {
/// The hard IRQ handler.
///
/// This is executed in interrupt context, hence all corresponding
/// limitations do apply.
///
/// All work that does not necessarily need to be executed from
/// interrupt context, should be deferred to a threaded handler.
/// See also [`ThreadedRegistration`].
fn handle(&self, device: &Device<Bound>) -> IrqReturn;
}
impl<T: ?Sized + Handler + Send> Handler for Arc<T> {
fn handle(&self, device: &Device<Bound>) -> IrqReturn {
T::handle(self, device)
}
}
impl<T: ?Sized + Handler, A: Allocator> Handler for Box<T, A> {
fn handle(&self, device: &Device<Bound>) -> IrqReturn {
T::handle(self, device)
}
}
/// # Invariants
///
/// - `self.irq` is the same as the one passed to `request_{threaded}_irq`.
/// - `cookie` was passed to `request_{threaded}_irq` as the cookie. It is guaranteed to be unique
/// by the type system, since each call to `new` will return a different instance of
/// `Registration`.
#[pin_data(PinnedDrop)]
struct RegistrationInner {
irq: u32,
cookie: *mut c_void,
}
impl RegistrationInner {
fn synchronize(&self) {
// SAFETY: safe as per the invariants of `RegistrationInner`
unsafe { bindings::synchronize_irq(self.irq) };
}
}
#[pinned_drop]
impl PinnedDrop for RegistrationInner {
fn drop(self: Pin<&mut Self>) {
// SAFETY:
//
// Safe as per the invariants of `RegistrationInner` and:
//
// - The containing struct is `!Unpin` and was initialized using
// pin-init, so it occupied the same memory location for the entirety of
// its lifetime.
//
// Notice that this will block until all handlers finish executing,
// i.e.: at no point will &self be invalid while the handler is running.
unsafe { bindings::free_irq(self.irq, self.cookie) };
}
}
// SAFETY: We only use `inner` on drop, which called at most once with no
// concurrent access.
unsafe impl Sync for RegistrationInner {}
// SAFETY: It is safe to send `RegistrationInner` across threads.
unsafe impl Send for RegistrationInner {}
/// A request for an IRQ line for a given device.
///
/// # Invariants
///
/// - `ìrq` is the number of an interrupt source of `dev`.
/// - `irq` has not been registered yet.
pub struct IrqRequest<'a> {
dev: &'a Device<Bound>,
irq: u32,
}
impl<'a> IrqRequest<'a> {
/// Creates a new IRQ request for the given device and IRQ number.
///
/// # Safety
///
/// - `irq` should be a valid IRQ number for `dev`.
pub(crate) unsafe fn new(dev: &'a Device<Bound>, irq: u32) -> Self {
// INVARIANT: `irq` is a valid IRQ number for `dev`.
IrqRequest { dev, irq }
}
/// Returns the IRQ number of an [`IrqRequest`].
pub fn irq(&self) -> u32 {
self.irq
}
}
/// A registration of an IRQ handler for a given IRQ line.
///
/// # Examples
///
/// The following is an example of using `Registration`. It uses a
/// [`Completion`] to coordinate between the IRQ
/// handler and process context. [`Completion`] uses interior mutability, so the
/// handler can signal with [`Completion::complete_all()`] and the process
/// context can wait with [`Completion::wait_for_completion()`] even though
/// there is no way to get a mutable reference to the any of the fields in
/// `Data`.
///
/// [`Completion`]: kernel::sync::Completion
/// [`Completion::complete_all()`]: kernel::sync::Completion::complete_all
/// [`Completion::wait_for_completion()`]: kernel::sync::Completion::wait_for_completion
///
/// ```
/// use kernel::c_str;
/// use kernel::device::{Bound, Device};
/// use kernel::irq::{self, Flags, IrqRequest, IrqReturn, Registration};
/// use kernel::prelude::*;
/// use kernel::sync::{Arc, Completion};
///
/// // Data shared between process and IRQ context.
/// #[pin_data]
/// struct Data {
/// #[pin]
/// completion: Completion,
/// }
///
/// impl irq::Handler for Data {
/// // Executed in IRQ context.
/// fn handle(&self, _dev: &Device<Bound>) -> IrqReturn {
/// self.completion.complete_all();
/// IrqReturn::Handled
/// }
/// }
///
/// // Registers an IRQ handler for the given IrqRequest.
/// //
/// // This runs in process context and assumes `request` was previously acquired from a device.
/// fn register_irq(
/// handler: impl PinInit<Data, Error>,
/// request: IrqRequest<'_>,
/// ) -> Result<Arc<Registration<Data>>> {
/// let registration = Registration::new(request, Flags::SHARED, c_str!("my_device"), handler);
///
/// let registration = Arc::pin_init(registration, GFP_KERNEL)?;
///
/// registration.handler().completion.wait_for_completion();
///
/// Ok(registration)
/// }
/// # Ok::<(), Error>(())
/// ```
///
/// # Invariants
///
/// * We own an irq handler whose cookie is a pointer to `Self`.
#[pin_data]
pub struct Registration<T: Handler + 'static> {
#[pin]
inner: Devres<RegistrationInner>,
#[pin]
handler: T,
/// Pinned because we need address stability so that we can pass a pointer
/// to the callback.
#[pin]
_pin: PhantomPinned,
}
impl<T: Handler + 'static> Registration<T> {
/// Registers the IRQ handler with the system for the given IRQ number.
pub fn new<'a>(
request: IrqRequest<'a>,
flags: Flags,
name: &'static CStr,
handler: impl PinInit<T, Error> + 'a,
) -> impl PinInit<Self, Error> + 'a {
try_pin_init!(&this in Self {
handler <- handler,
inner <- Devres::new(
request.dev,
try_pin_init!(RegistrationInner {
// INVARIANT: `this` is a valid pointer to the `Registration` instance
cookie: this.as_ptr().cast::<c_void>(),
irq: {
// SAFETY:
// - The callbacks are valid for use with request_irq.
// - If this succeeds, the slot is guaranteed to be valid until the
// destructor of Self runs, which will deregister the callbacks
// before the memory location becomes invalid.
// - When request_irq is called, everything that handle_irq_callback will
// touch has already been initialized, so it's safe for the callback to
// be called immediately.
to_result(unsafe {
bindings::request_irq(
request.irq,
Some(handle_irq_callback::<T>),
flags.into_inner(),
name.as_char_ptr(),
this.as_ptr().cast::<c_void>(),
)
})?;
request.irq
}
})
),
_pin: PhantomPinned,
})
}
/// Returns a reference to the handler that was registered with the system.
pub fn handler(&self) -> &T {
&self.handler
}
/// Wait for pending IRQ handlers on other CPUs.
///
/// This will attempt to access the inner [`Devres`] container.
pub fn try_synchronize(&self) -> Result {
let inner = self.inner.try_access().ok_or(ENODEV)?;
inner.synchronize();
Ok(())
}
/// Wait for pending IRQ handlers on other CPUs.
pub fn synchronize(&self, dev: &Device<Bound>) -> Result {
let inner = self.inner.access(dev)?;
inner.synchronize();
Ok(())
}
}
/// # Safety
///
/// This function should be only used as the callback in `request_irq`.
unsafe extern "C" fn handle_irq_callback<T: Handler>(_irq: i32, ptr: *mut c_void) -> c_uint {
// SAFETY: `ptr` is a pointer to `Registration<T>` set in `Registration::new`
let registration = unsafe { &*(ptr as *const Registration<T>) };
// SAFETY: The irq callback is removed before the device is unbound, so the fact that the irq
// callback is running implies that the device has not yet been unbound.
let device = unsafe { registration.inner.device().as_bound() };
T::handle(®istration.handler, device) as c_uint
}
/// The value that can be returned from [`ThreadedHandler::handle`].
#[repr(u32)]
pub enum ThreadedIrqReturn {
/// The interrupt was not from this device or was not handled.
None = bindings::irqreturn_IRQ_NONE,
/// The interrupt was handled by this device.
Handled = bindings::irqreturn_IRQ_HANDLED,
/// The handler wants the handler thread to wake up.
WakeThread = bindings::irqreturn_IRQ_WAKE_THREAD,
}
/// Callbacks for a threaded IRQ handler.
pub trait ThreadedHandler: Sync {
/// The hard IRQ handler.
///
/// This is executed in interrupt context, hence all corresponding
/// limitations do apply. All work that does not necessarily need to be
/// executed from interrupt context, should be deferred to the threaded
/// handler, i.e. [`ThreadedHandler::handle_threaded`].
///
/// The default implementation returns [`ThreadedIrqReturn::WakeThread`].
#[expect(unused_variables)]
fn handle(&self, device: &Device<Bound>) -> ThreadedIrqReturn {
ThreadedIrqReturn::WakeThread
}
/// The threaded IRQ handler.
///
/// This is executed in process context. The kernel creates a dedicated
/// `kthread` for this purpose.
fn handle_threaded(&self, device: &Device<Bound>) -> IrqReturn;
}
impl<T: ?Sized + ThreadedHandler + Send> ThreadedHandler for Arc<T> {
fn handle(&self, device: &Device<Bound>) -> ThreadedIrqReturn {
T::handle(self, device)
}
fn handle_threaded(&self, device: &Device<Bound>) -> IrqReturn {
T::handle_threaded(self, device)
}
}
impl<T: ?Sized + ThreadedHandler, A: Allocator> ThreadedHandler for Box<T, A> {
fn handle(&self, device: &Device<Bound>) -> ThreadedIrqReturn {
T::handle(self, device)
}
fn handle_threaded(&self, device: &Device<Bound>) -> IrqReturn {
T::handle_threaded(self, device)
}
}
/// A registration of a threaded IRQ handler for a given IRQ line.
///
/// Two callbacks are required: one to handle the IRQ, and one to handle any
/// other work in a separate thread.
///
/// The thread handler is only called if the IRQ handler returns
/// [`ThreadedIrqReturn::WakeThread`].
///
/// # Examples
///
/// The following is an example of using [`ThreadedRegistration`]. It uses a
/// [`Mutex`](kernel::sync::Mutex) to provide interior mutability.
///
/// ```
/// use kernel::c_str;
/// use kernel::device::{Bound, Device};
/// use kernel::irq::{
/// self, Flags, IrqRequest, IrqReturn, ThreadedHandler, ThreadedIrqReturn,
/// ThreadedRegistration,
/// };
/// use kernel::prelude::*;
/// use kernel::sync::{Arc, Mutex};
///
/// // Declare a struct that will be passed in when the interrupt fires. The u32
/// // merely serves as an example of some internal data.
/// //
/// // [`irq::ThreadedHandler::handle`] takes `&self`. This example
/// // illustrates how interior mutability can be used when sharing the data
/// // between process context and IRQ context.
/// #[pin_data]
/// struct Data {
/// #[pin]
/// value: Mutex<u32>,
/// }
///
/// impl ThreadedHandler for Data {
/// // This will run (in a separate kthread) if and only if
/// // [`ThreadedHandler::handle`] returns [`WakeThread`], which it does by
/// // default.
/// fn handle_threaded(&self, _dev: &Device<Bound>) -> IrqReturn {
/// let mut data = self.value.lock();
/// *data += 1;
/// IrqReturn::Handled
/// }
/// }
///
/// // Registers a threaded IRQ handler for the given [`IrqRequest`].
/// //
/// // This is executing in process context and assumes that `request` was
/// // previously acquired from a device.
/// fn register_threaded_irq(
/// handler: impl PinInit<Data, Error>,
/// request: IrqRequest<'_>,
/// ) -> Result<Arc<ThreadedRegistration<Data>>> {
/// let registration =
/// ThreadedRegistration::new(request, Flags::SHARED, c_str!("my_device"), handler);
///
/// let registration = Arc::pin_init(registration, GFP_KERNEL)?;
///
/// {
/// // The data can be accessed from process context too.
/// let mut data = registration.handler().value.lock();
/// *data += 1;
/// }
///
/// Ok(registration)
/// }
/// # Ok::<(), Error>(())
/// ```
///
/// # Invariants
///
/// * We own an irq handler whose cookie is a pointer to `Self`.
#[pin_data]
pub struct ThreadedRegistration<T: ThreadedHandler + 'static> {
#[pin]
inner: Devres<RegistrationInner>,
#[pin]
handler: T,
/// Pinned because we need address stability so that we can pass a pointer
/// to the callback.
#[pin]
_pin: PhantomPinned,
}
impl<T: ThreadedHandler + 'static> ThreadedRegistration<T> {
/// Registers the IRQ handler with the system for the given IRQ number.
pub fn new<'a>(
request: IrqRequest<'a>,
flags: Flags,
name: &'static CStr,
handler: impl PinInit<T, Error> + 'a,
) -> impl PinInit<Self, Error> + 'a {
try_pin_init!(&this in Self {
handler <- handler,
inner <- Devres::new(
request.dev,
try_pin_init!(RegistrationInner {
// INVARIANT: `this` is a valid pointer to the `ThreadedRegistration` instance.
cookie: this.as_ptr().cast::<c_void>(),
irq: {
// SAFETY:
// - The callbacks are valid for use with request_threaded_irq.
// - If this succeeds, the slot is guaranteed to be valid until the
// destructor of Self runs, which will deregister the callbacks
// before the memory location becomes invalid.
// - When request_threaded_irq is called, everything that the two callbacks
// will touch has already been initialized, so it's safe for the
// callbacks to be called immediately.
to_result(unsafe {
bindings::request_threaded_irq(
request.irq,
Some(handle_threaded_irq_callback::<T>),
Some(thread_fn_callback::<T>),
flags.into_inner(),
name.as_char_ptr(),
this.as_ptr().cast::<c_void>(),
)
})?;
request.irq
}
})
),
_pin: PhantomPinned,
})
}
/// Returns a reference to the handler that was registered with the system.
pub fn handler(&self) -> &T {
&self.handler
}
/// Wait for pending IRQ handlers on other CPUs.
///
/// This will attempt to access the inner [`Devres`] container.
pub fn try_synchronize(&self) -> Result {
let inner = self.inner.try_access().ok_or(ENODEV)?;
inner.synchronize();
Ok(())
}
/// Wait for pending IRQ handlers on other CPUs.
pub fn synchronize(&self, dev: &Device<Bound>) -> Result {
let inner = self.inner.access(dev)?;
inner.synchronize();
Ok(())
}
}
/// # Safety
///
/// This function should be only used as the callback in `request_threaded_irq`.
unsafe extern "C" fn handle_threaded_irq_callback<T: ThreadedHandler>(
_irq: i32,
ptr: *mut c_void,
) -> c_uint {
// SAFETY: `ptr` is a pointer to `ThreadedRegistration<T>` set in `ThreadedRegistration::new`
let registration = unsafe { &*(ptr as *const ThreadedRegistration<T>) };
// SAFETY: The irq callback is removed before the device is unbound, so the fact that the irq
// callback is running implies that the device has not yet been unbound.
let device = unsafe { registration.inner.device().as_bound() };
T::handle(®istration.handler, device) as c_uint
}
/// # Safety
///
/// This function should be only used as the callback in `request_threaded_irq`.
unsafe extern "C" fn thread_fn_callback<T: ThreadedHandler>(_irq: i32, ptr: *mut c_void) -> c_uint {
// SAFETY: `ptr` is a pointer to `ThreadedRegistration<T>` set in `ThreadedRegistration::new`
let registration = unsafe { &*(ptr as *const ThreadedRegistration<T>) };
// SAFETY: The irq callback is removed before the device is unbound, so the fact that the irq
// callback is running implies that the device has not yet been unbound.
let device = unsafe { registration.inner.device().as_bound() };
T::handle_threaded(®istration.handler, device) as c_uint
}