kernel/
io.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Memory-mapped IO.
4//!
5//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
6
7use crate::error::{code::EINVAL, Result};
8use crate::{bindings, build_assert};
9
10/// Raw representation of an MMIO region.
11///
12/// By itself, the existence of an instance of this structure does not provide any guarantees that
13/// the represented MMIO region does exist or is properly mapped.
14///
15/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
16/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
17/// any guarantees are given.
18pub struct IoRaw<const SIZE: usize = 0> {
19    addr: usize,
20    maxsize: usize,
21}
22
23impl<const SIZE: usize> IoRaw<SIZE> {
24    /// Returns a new `IoRaw` instance on success, an error otherwise.
25    pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
26        if maxsize < SIZE {
27            return Err(EINVAL);
28        }
29
30        Ok(Self { addr, maxsize })
31    }
32
33    /// Returns the base address of the MMIO region.
34    #[inline]
35    pub fn addr(&self) -> usize {
36        self.addr
37    }
38
39    /// Returns the maximum size of the MMIO region.
40    #[inline]
41    pub fn maxsize(&self) -> usize {
42        self.maxsize
43    }
44}
45
46/// IO-mapped memory, starting at the base address @addr and spanning @maxlen bytes.
47///
48/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
49/// mapping, performing an additional region request etc.
50///
51/// # Invariant
52///
53/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
54/// `maxsize`.
55///
56/// # Examples
57///
58/// ```no_run
59/// # use kernel::{bindings, io::{Io, IoRaw}};
60/// # use core::ops::Deref;
61///
62/// // See also [`pci::Bar`] for a real example.
63/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
64///
65/// impl<const SIZE: usize> IoMem<SIZE> {
66///     /// # Safety
67///     ///
68///     /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
69///     /// virtual address space.
70///     unsafe fn new(paddr: usize) -> Result<Self>{
71///         // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
72///         // valid for `ioremap`.
73///         let addr = unsafe { bindings::ioremap(paddr as _, SIZE as _) };
74///         if addr.is_null() {
75///             return Err(ENOMEM);
76///         }
77///
78///         Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
79///     }
80/// }
81///
82/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
83///     fn drop(&mut self) {
84///         // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
85///         unsafe { bindings::iounmap(self.0.addr() as _); };
86///     }
87/// }
88///
89/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
90///    type Target = Io<SIZE>;
91///
92///    fn deref(&self) -> &Self::Target {
93///         // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
94///         unsafe { Io::from_raw(&self.0) }
95///    }
96/// }
97///
98///# fn no_run() -> Result<(), Error> {
99/// // SAFETY: Invalid usage for example purposes.
100/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
101/// iomem.write32(0x42, 0x0);
102/// assert!(iomem.try_write32(0x42, 0x0).is_ok());
103/// assert!(iomem.try_write32(0x42, 0x4).is_err());
104/// # Ok(())
105/// # }
106/// ```
107#[repr(transparent)]
108pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
109
110macro_rules! define_read {
111    ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident -> $type_name:ty) => {
112        /// Read IO data from a given offset known at compile time.
113        ///
114        /// Bound checks are performed on compile time, hence if the offset is not known at compile
115        /// time, the build will fail.
116        $(#[$attr])*
117        #[inline]
118        pub fn $name(&self, offset: usize) -> $type_name {
119            let addr = self.io_addr_assert::<$type_name>(offset);
120
121            // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
122            unsafe { bindings::$c_fn(addr as _) }
123        }
124
125        /// Read IO data from a given offset.
126        ///
127        /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
128        /// out of bounds.
129        $(#[$attr])*
130        pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
131            let addr = self.io_addr::<$type_name>(offset)?;
132
133            // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
134            Ok(unsafe { bindings::$c_fn(addr as _) })
135        }
136    };
137}
138
139macro_rules! define_write {
140    ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident <- $type_name:ty) => {
141        /// Write IO data from a given offset known at compile time.
142        ///
143        /// Bound checks are performed on compile time, hence if the offset is not known at compile
144        /// time, the build will fail.
145        $(#[$attr])*
146        #[inline]
147        pub fn $name(&self, value: $type_name, offset: usize) {
148            let addr = self.io_addr_assert::<$type_name>(offset);
149
150            // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
151            unsafe { bindings::$c_fn(value, addr as _, ) }
152        }
153
154        /// Write IO data from a given offset.
155        ///
156        /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
157        /// out of bounds.
158        $(#[$attr])*
159        pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
160            let addr = self.io_addr::<$type_name>(offset)?;
161
162            // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
163            unsafe { bindings::$c_fn(value, addr as _) }
164            Ok(())
165        }
166    };
167}
168
169impl<const SIZE: usize> Io<SIZE> {
170    /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
171    ///
172    /// # Safety
173    ///
174    /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
175    /// `maxsize`.
176    pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
177        // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
178        unsafe { &*core::ptr::from_ref(raw).cast() }
179    }
180
181    /// Returns the base address of this mapping.
182    #[inline]
183    pub fn addr(&self) -> usize {
184        self.0.addr()
185    }
186
187    /// Returns the maximum size of this mapping.
188    #[inline]
189    pub fn maxsize(&self) -> usize {
190        self.0.maxsize()
191    }
192
193    #[inline]
194    const fn offset_valid<U>(offset: usize, size: usize) -> bool {
195        let type_size = core::mem::size_of::<U>();
196        if let Some(end) = offset.checked_add(type_size) {
197            end <= size && offset % type_size == 0
198        } else {
199            false
200        }
201    }
202
203    #[inline]
204    fn io_addr<U>(&self, offset: usize) -> Result<usize> {
205        if !Self::offset_valid::<U>(offset, self.maxsize()) {
206            return Err(EINVAL);
207        }
208
209        // Probably no need to check, since the safety requirements of `Self::new` guarantee that
210        // this can't overflow.
211        self.addr().checked_add(offset).ok_or(EINVAL)
212    }
213
214    #[inline]
215    fn io_addr_assert<U>(&self, offset: usize) -> usize {
216        build_assert!(Self::offset_valid::<U>(offset, SIZE));
217
218        self.addr() + offset
219    }
220
221    define_read!(read8, try_read8, readb -> u8);
222    define_read!(read16, try_read16, readw -> u16);
223    define_read!(read32, try_read32, readl -> u32);
224    define_read!(
225        #[cfg(CONFIG_64BIT)]
226        read64,
227        try_read64,
228        readq -> u64
229    );
230
231    define_read!(read8_relaxed, try_read8_relaxed, readb_relaxed -> u8);
232    define_read!(read16_relaxed, try_read16_relaxed, readw_relaxed -> u16);
233    define_read!(read32_relaxed, try_read32_relaxed, readl_relaxed -> u32);
234    define_read!(
235        #[cfg(CONFIG_64BIT)]
236        read64_relaxed,
237        try_read64_relaxed,
238        readq_relaxed -> u64
239    );
240
241    define_write!(write8, try_write8, writeb <- u8);
242    define_write!(write16, try_write16, writew <- u16);
243    define_write!(write32, try_write32, writel <- u32);
244    define_write!(
245        #[cfg(CONFIG_64BIT)]
246        write64,
247        try_write64,
248        writeq <- u64
249    );
250
251    define_write!(write8_relaxed, try_write8_relaxed, writeb_relaxed <- u8);
252    define_write!(write16_relaxed, try_write16_relaxed, writew_relaxed <- u16);
253    define_write!(write32_relaxed, try_write32_relaxed, writel_relaxed <- u32);
254    define_write!(
255        #[cfg(CONFIG_64BIT)]
256        write64_relaxed,
257        try_write64_relaxed,
258        writeq_relaxed <- u64
259    );
260}