kernel/
dma.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Direct memory access (DMA).
4//!
5//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7use crate::{
8    bindings, build_assert,
9    device::Device,
10    error::code::*,
11    error::Result,
12    transmute::{AsBytes, FromBytes},
13    types::ARef,
14};
15
16/// Possible attributes associated with a DMA mapping.
17///
18/// They can be combined with the operators `|`, `&`, and `!`.
19///
20/// Values can be used from the [`attrs`] module.
21///
22/// # Examples
23///
24/// ```
25/// use kernel::device::Device;
26/// use kernel::dma::{attrs::*, CoherentAllocation};
27///
28/// # fn test(dev: &Device) -> Result {
29/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
30/// let c: CoherentAllocation<u64> =
31///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
32/// # Ok::<(), Error>(()) }
33/// ```
34#[derive(Clone, Copy, PartialEq)]
35#[repr(transparent)]
36pub struct Attrs(u32);
37
38impl Attrs {
39    /// Get the raw representation of this attribute.
40    pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
41        self.0 as _
42    }
43
44    /// Check whether `flags` is contained in `self`.
45    pub fn contains(self, flags: Attrs) -> bool {
46        (self & flags) == flags
47    }
48}
49
50impl core::ops::BitOr for Attrs {
51    type Output = Self;
52    fn bitor(self, rhs: Self) -> Self::Output {
53        Self(self.0 | rhs.0)
54    }
55}
56
57impl core::ops::BitAnd for Attrs {
58    type Output = Self;
59    fn bitand(self, rhs: Self) -> Self::Output {
60        Self(self.0 & rhs.0)
61    }
62}
63
64impl core::ops::Not for Attrs {
65    type Output = Self;
66    fn not(self) -> Self::Output {
67        Self(!self.0)
68    }
69}
70
71/// DMA mapping attributes.
72pub mod attrs {
73    use super::Attrs;
74
75    /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
76    /// and writes may pass each other.
77    pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
78
79    /// Specifies that writes to the mapping may be buffered to improve performance.
80    pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
81
82    /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
83    pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
84
85    /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
86    /// that it has been already transferred to 'device' domain.
87    pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
88
89    /// Forces contiguous allocation of the buffer in physical memory.
90    pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
91
92    /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
93    /// to allocate memory to in a way that gives better TLB efficiency.
94    pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
95
96    /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
97    /// __GFP_NOWARN).
98    pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
99
100    /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
101    /// ideally inaccessible or at least read-only at lesser-privileged levels).
102    pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
103}
104
105/// An abstraction of the `dma_alloc_coherent` API.
106///
107/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
108/// large consistent DMA regions.
109///
110/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
111/// processor's virtual address space) and the device address which can be given to the device
112/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
113/// is dropped.
114///
115/// # Invariants
116///
117/// For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
118/// to an allocated region of consistent memory and `dma_handle` is the DMA address base of
119/// the region.
120// TODO
121//
122// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
123// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
124// that device resources can never survive device unbind.
125//
126// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
127// allocation from surviving device unbind; it would require RCU read side critical sections to
128// access the memory, which may require subsequent unnecessary copies.
129//
130// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
131// entire `CoherentAllocation` including the allocated memory itself.
132pub struct CoherentAllocation<T: AsBytes + FromBytes> {
133    dev: ARef<Device>,
134    dma_handle: bindings::dma_addr_t,
135    count: usize,
136    cpu_addr: *mut T,
137    dma_attrs: Attrs,
138}
139
140impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
141    /// Allocates a region of `size_of::<T> * count` of consistent memory.
142    ///
143    /// # Examples
144    ///
145    /// ```
146    /// use kernel::device::Device;
147    /// use kernel::dma::{attrs::*, CoherentAllocation};
148    ///
149    /// # fn test(dev: &Device) -> Result {
150    /// let c: CoherentAllocation<u64> =
151    ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
152    /// # Ok::<(), Error>(()) }
153    /// ```
154    pub fn alloc_attrs(
155        dev: &Device,
156        count: usize,
157        gfp_flags: kernel::alloc::Flags,
158        dma_attrs: Attrs,
159    ) -> Result<CoherentAllocation<T>> {
160        build_assert!(
161            core::mem::size_of::<T>() > 0,
162            "It doesn't make sense for the allocated type to be a ZST"
163        );
164
165        let size = count
166            .checked_mul(core::mem::size_of::<T>())
167            .ok_or(EOVERFLOW)?;
168        let mut dma_handle = 0;
169        // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
170        let ret = unsafe {
171            bindings::dma_alloc_attrs(
172                dev.as_raw(),
173                size,
174                &mut dma_handle,
175                gfp_flags.as_raw(),
176                dma_attrs.as_raw(),
177            )
178        };
179        if ret.is_null() {
180            return Err(ENOMEM);
181        }
182        // INVARIANT: We just successfully allocated a coherent region which is accessible for
183        // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
184        // to the device.
185        Ok(Self {
186            dev: dev.into(),
187            dma_handle,
188            count,
189            cpu_addr: ret as *mut T,
190            dma_attrs,
191        })
192    }
193
194    /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
195    /// `dma_attrs` is 0 by default.
196    pub fn alloc_coherent(
197        dev: &Device,
198        count: usize,
199        gfp_flags: kernel::alloc::Flags,
200    ) -> Result<CoherentAllocation<T>> {
201        CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
202    }
203
204    /// Returns the base address to the allocated region in the CPU's virtual address space.
205    pub fn start_ptr(&self) -> *const T {
206        self.cpu_addr
207    }
208
209    /// Returns the base address to the allocated region in the CPU's virtual address space as
210    /// a mutable pointer.
211    pub fn start_ptr_mut(&mut self) -> *mut T {
212        self.cpu_addr
213    }
214
215    /// Returns a DMA handle which may given to the device as the DMA address base of
216    /// the region.
217    pub fn dma_handle(&self) -> bindings::dma_addr_t {
218        self.dma_handle
219    }
220
221    /// Returns a pointer to an element from the region with bounds checking. `offset` is in
222    /// units of `T`, not the number of bytes.
223    ///
224    /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
225    #[doc(hidden)]
226    pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
227        if offset >= self.count {
228            return Err(EINVAL);
229        }
230        // SAFETY:
231        // - The pointer is valid due to type invariant on `CoherentAllocation`
232        // and we've just checked that the range and index is within bounds.
233        // - `offset` can't overflow since it is smaller than `self.count` and we've checked
234        // that `self.count` won't overflow early in the constructor.
235        Ok(unsafe { self.cpu_addr.add(offset) })
236    }
237
238    /// Reads the value of `field` and ensures that its type is [`FromBytes`].
239    ///
240    /// # Safety
241    ///
242    /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
243    /// validated beforehand.
244    ///
245    /// Public but hidden since it should only be used from [`dma_read`] macro.
246    #[doc(hidden)]
247    pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
248        // SAFETY:
249        // - By the safety requirements field is valid.
250        // - Using read_volatile() here is not sound as per the usual rules, the usage here is
251        // a special exception with the following notes in place. When dealing with a potential
252        // race from a hardware or code outside kernel (e.g. user-space program), we need that
253        // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
254        // rationale behind is that it should generate the same code as READ_ONCE() which the
255        // kernel already relies on to avoid UB on data races. Note that the usage of
256        // read_volatile() is limited to this particular case, it cannot be used to prevent
257        // the UB caused by racing between two kernel functions nor do they provide atomicity.
258        unsafe { field.read_volatile() }
259    }
260
261    /// Writes a value to `field` and ensures that its type is [`AsBytes`].
262    ///
263    /// # Safety
264    ///
265    /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
266    /// validated beforehand.
267    ///
268    /// Public but hidden since it should only be used from [`dma_write`] macro.
269    #[doc(hidden)]
270    pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
271        // SAFETY:
272        // - By the safety requirements field is valid.
273        // - Using write_volatile() here is not sound as per the usual rules, the usage here is
274        // a special exception with the following notes in place. When dealing with a potential
275        // race from a hardware or code outside kernel (e.g. user-space program), we need that
276        // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
277        // rationale behind is that it should generate the same code as WRITE_ONCE() which the
278        // kernel already relies on to avoid UB on data races. Note that the usage of
279        // write_volatile() is limited to this particular case, it cannot be used to prevent
280        // the UB caused by racing between two kernel functions nor do they provide atomicity.
281        unsafe { field.write_volatile(val) }
282    }
283}
284
285/// Note that the device configured to do DMA must be halted before this object is dropped.
286impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
287    fn drop(&mut self) {
288        let size = self.count * core::mem::size_of::<T>();
289        // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
290        // The cpu address, and the dma handle are valid due to the type invariants on
291        // `CoherentAllocation`.
292        unsafe {
293            bindings::dma_free_attrs(
294                self.dev.as_raw(),
295                size,
296                self.cpu_addr as _,
297                self.dma_handle,
298                self.dma_attrs.as_raw(),
299            )
300        }
301    }
302}
303
304// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
305// can be sent to another thread.
306unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
307
308/// Reads a field of an item from an allocated region of structs.
309///
310/// # Examples
311///
312/// ```
313/// use kernel::device::Device;
314/// use kernel::dma::{attrs::*, CoherentAllocation};
315///
316/// struct MyStruct { field: u32, }
317///
318/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
319/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
320/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
321/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
322///
323/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
324/// let whole = kernel::dma_read!(alloc[2]);
325/// let field = kernel::dma_read!(alloc[1].field);
326/// # Ok::<(), Error>(()) }
327/// ```
328#[macro_export]
329macro_rules! dma_read {
330    ($dma:expr, $idx: expr, $($field:tt)*) => {{
331        let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
332        // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
333        // dereferenced. The compiler also further validates the expression on whether `field`
334        // is a member of `item` when expanded by the macro.
335        unsafe {
336            let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
337            $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
338        }
339    }};
340    ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
341        $crate::dma_read!($dma, $idx, $($field)*);
342    };
343    ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
344        $crate::dma_read!($($dma).*, $idx, $($field)*);
345    };
346}
347
348/// Writes to a field of an item from an allocated region of structs.
349///
350/// # Examples
351///
352/// ```
353/// use kernel::device::Device;
354/// use kernel::dma::{attrs::*, CoherentAllocation};
355///
356/// struct MyStruct { member: u32, }
357///
358/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
359/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
360/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
361/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
362///
363/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
364/// kernel::dma_write!(alloc[2].member = 0xf);
365/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
366/// # Ok::<(), Error>(()) }
367/// ```
368#[macro_export]
369macro_rules! dma_write {
370    ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
371        $crate::dma_write!($dma, $idx, $($field)*);
372    }};
373    ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
374        $crate::dma_write!($($dma).*, $idx, $($field)*);
375    }};
376    ($dma:expr, $idx: expr, = $val:expr) => {
377        let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
378        // SAFETY: `item_from_index` ensures that `item` is always a valid item.
379        unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
380    };
381    ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
382        let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
383        // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
384        // dereferenced. The compiler also further validates the expression on whether `field`
385        // is a member of `item` when expanded by the macro.
386        unsafe {
387            let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
388            $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
389        }
390    };
391}