1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
//! Rust API for bitmap.
//!
//! C headers: [`include/linux/bitmap.h`](srctree/include/linux/bitmap.h).
use crate::alloc::{AllocError, Flags};
use crate::bindings;
#[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
use crate::pr_err;
use core::ptr::NonNull;
const BITS_PER_LONG: usize = bindings::BITS_PER_LONG as usize;
/// Represents a C bitmap. Wraps underlying C bitmap API.
///
/// # Invariants
///
/// Must reference a `[c_ulong]` long enough to fit `data.len()` bits.
#[cfg_attr(CONFIG_64BIT, repr(align(8)))]
#[cfg_attr(not(CONFIG_64BIT), repr(align(4)))]
pub struct Bitmap {
data: [()],
}
impl Bitmap {
/// Borrows a C bitmap.
///
/// # Safety
///
/// * `ptr` holds a non-null address of an initialized array of `unsigned long`
/// that is large enough to hold `nbits` bits.
/// * the array must not be freed for the lifetime of this [`Bitmap`]
/// * concurrent access only happens through atomic operations
pub unsafe fn from_raw<'a>(ptr: *const usize, nbits: usize) -> &'a Bitmap {
let data: *const [()] = core::ptr::slice_from_raw_parts(ptr.cast(), nbits);
// INVARIANT: `data` references an initialized array that can hold `nbits` bits.
// SAFETY:
// The caller guarantees that `data` (derived from `ptr` and `nbits`)
// points to a valid, initialized, and appropriately sized memory region
// that will not be freed for the lifetime 'a.
// We are casting `*const [()]` to `*const Bitmap`. The `Bitmap`
// struct is a ZST with a `data: [()]` field. This means its layout
// is compatible with a slice of `()`, and effectively it's a "thin pointer"
// (its size is 0 and alignment is 1). The `slice_from_raw_parts`
// function correctly encodes the length (number of bits, not elements)
// into the metadata of the fat pointer. Therefore, dereferencing this
// pointer as `&Bitmap` is safe given the caller's guarantees.
unsafe { &*(data as *const Bitmap) }
}
/// Borrows a C bitmap exclusively.
///
/// # Safety
///
/// * `ptr` holds a non-null address of an initialized array of `unsigned long`
/// that is large enough to hold `nbits` bits.
/// * the array must not be freed for the lifetime of this [`Bitmap`]
/// * no concurrent access may happen.
pub unsafe fn from_raw_mut<'a>(ptr: *mut usize, nbits: usize) -> &'a mut Bitmap {
let data: *mut [()] = core::ptr::slice_from_raw_parts_mut(ptr.cast(), nbits);
// INVARIANT: `data` references an initialized array that can hold `nbits` bits.
// SAFETY:
// The caller guarantees that `data` (derived from `ptr` and `nbits`)
// points to a valid, initialized, and appropriately sized memory region
// that will not be freed for the lifetime 'a.
// Furthermore, the caller guarantees no concurrent access will happen,
// which upholds the exclusivity requirement for a mutable reference.
// Similar to `from_raw`, casting `*mut [()]` to `*mut Bitmap` is
// safe because `Bitmap` is a ZST with a `data: [()]` field,
// making its layout compatible with a slice of `()`.
unsafe { &mut *(data as *mut Bitmap) }
}
/// Returns a raw pointer to the backing [`Bitmap`].
pub fn as_ptr(&self) -> *const usize {
core::ptr::from_ref::<Bitmap>(self).cast::<usize>()
}
/// Returns a mutable raw pointer to the backing [`Bitmap`].
pub fn as_mut_ptr(&mut self) -> *mut usize {
core::ptr::from_mut::<Bitmap>(self).cast::<usize>()
}
/// Returns length of this [`Bitmap`].
#[expect(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.data.len()
}
}
/// Holds either a pointer to array of `unsigned long` or a small bitmap.
#[repr(C)]
union BitmapRepr {
bitmap: usize,
ptr: NonNull<usize>,
}
macro_rules! bitmap_assert {
($cond:expr, $($arg:tt)+) => {
#[cfg(CONFIG_RUST_BITMAP_HARDENED)]
assert!($cond, $($arg)*);
}
}
macro_rules! bitmap_assert_return {
($cond:expr, $($arg:tt)+) => {
#[cfg(CONFIG_RUST_BITMAP_HARDENED)]
assert!($cond, $($arg)*);
#[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
if !($cond) {
pr_err!($($arg)*);
return
}
}
}
/// Represents an owned bitmap.
///
/// Wraps underlying C bitmap API. See [`Bitmap`] for available
/// methods.
///
/// # Examples
///
/// Basic usage
///
/// ```
/// use kernel::alloc::flags::GFP_KERNEL;
/// use kernel::bitmap::BitmapVec;
///
/// let mut b = BitmapVec::new(16, GFP_KERNEL)?;
///
/// assert_eq!(16, b.len());
/// for i in 0..16 {
/// if i % 4 == 0 {
/// b.set_bit(i);
/// }
/// }
/// assert_eq!(Some(0), b.next_bit(0));
/// assert_eq!(Some(1), b.next_zero_bit(0));
/// assert_eq!(Some(4), b.next_bit(1));
/// assert_eq!(Some(5), b.next_zero_bit(4));
/// assert_eq!(Some(12), b.last_bit());
/// # Ok::<(), Error>(())
/// ```
///
/// # Invariants
///
/// * `nbits` is `<= i32::MAX` and never changes.
/// * if `nbits <= bindings::BITS_PER_LONG`, then `repr` is a `usize`.
/// * otherwise, `repr` holds a non-null pointer to an initialized
/// array of `unsigned long` that is large enough to hold `nbits` bits.
pub struct BitmapVec {
/// Representation of bitmap.
repr: BitmapRepr,
/// Length of this bitmap. Must be `<= i32::MAX`.
nbits: usize,
}
impl core::ops::Deref for BitmapVec {
type Target = Bitmap;
fn deref(&self) -> &Bitmap {
let ptr = if self.nbits <= BITS_PER_LONG {
// SAFETY: Bitmap is represented inline.
#[allow(unused_unsafe, reason = "Safe since Rust 1.92.0")]
unsafe {
core::ptr::addr_of!(self.repr.bitmap)
}
} else {
// SAFETY: Bitmap is represented as array of `unsigned long`.
unsafe { self.repr.ptr.as_ptr() }
};
// SAFETY: We got the right pointer and invariants of [`Bitmap`] hold.
// An inline bitmap is treated like an array with single element.
unsafe { Bitmap::from_raw(ptr, self.nbits) }
}
}
impl core::ops::DerefMut for BitmapVec {
fn deref_mut(&mut self) -> &mut Bitmap {
let ptr = if self.nbits <= BITS_PER_LONG {
// SAFETY: Bitmap is represented inline.
#[allow(unused_unsafe, reason = "Safe since Rust 1.92.0")]
unsafe {
core::ptr::addr_of_mut!(self.repr.bitmap)
}
} else {
// SAFETY: Bitmap is represented as array of `unsigned long`.
unsafe { self.repr.ptr.as_ptr() }
};
// SAFETY: We got the right pointer and invariants of [`BitmapVec`] hold.
// An inline bitmap is treated like an array with single element.
unsafe { Bitmap::from_raw_mut(ptr, self.nbits) }
}
}
/// Enable ownership transfer to other threads.
///
/// SAFETY: We own the underlying bitmap representation.
unsafe impl Send for BitmapVec {}
/// Enable unsynchronized concurrent access to [`BitmapVec`] through shared references.
///
/// SAFETY: `deref()` will return a reference to a [`Bitmap`]. Its methods
/// take immutable references are either atomic or read-only.
unsafe impl Sync for BitmapVec {}
impl Drop for BitmapVec {
fn drop(&mut self) {
if self.nbits <= BITS_PER_LONG {
return;
}
// SAFETY: `self.ptr` was returned by the C `bitmap_zalloc`.
//
// INVARIANT: there is no other use of the `self.ptr` after this
// call and the value is being dropped so the broken invariant is
// not observable on function exit.
unsafe { bindings::bitmap_free(self.repr.ptr.as_ptr()) };
}
}
impl BitmapVec {
/// Constructs a new [`BitmapVec`].
///
/// Fails with [`AllocError`] when the [`BitmapVec`] could not be allocated. This
/// includes the case when `nbits` is greater than `i32::MAX`.
#[inline]
pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> {
if nbits <= BITS_PER_LONG {
return Ok(BitmapVec {
repr: BitmapRepr { bitmap: 0 },
nbits,
});
}
if nbits > i32::MAX.try_into().unwrap() {
return Err(AllocError);
}
let nbits_u32 = u32::try_from(nbits).unwrap();
// SAFETY: `BITS_PER_LONG < nbits` and `nbits <= i32::MAX`.
let ptr = unsafe { bindings::bitmap_zalloc(nbits_u32, flags.as_raw()) };
let ptr = NonNull::new(ptr).ok_or(AllocError)?;
// INVARIANT: `ptr` returned by C `bitmap_zalloc` and `nbits` checked.
Ok(BitmapVec {
repr: BitmapRepr { ptr },
nbits,
})
}
/// Returns length of this [`Bitmap`].
#[allow(clippy::len_without_is_empty)]
#[inline]
pub fn len(&self) -> usize {
self.nbits
}
/// Fills this `Bitmap` with random bits.
#[cfg(CONFIG_FIND_BIT_BENCHMARK_RUST)]
pub fn fill_random(&mut self) {
// SAFETY: `self.as_mut_ptr` points to either an array of the
// appropriate length or one usize.
unsafe {
bindings::get_random_bytes(
self.as_mut_ptr().cast::<ffi::c_void>(),
usize::div_ceil(self.nbits, bindings::BITS_PER_LONG as usize)
* bindings::BITS_PER_LONG as usize
/ 8,
);
}
}
}
impl Bitmap {
/// Set bit with index `index`.
///
/// ATTENTION: `set_bit` is non-atomic, which differs from the naming
/// convention in C code. The corresponding C function is `__set_bit`.
///
/// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
/// or equal to `self.nbits`, does nothing.
///
/// # Panics
///
/// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
/// or equal to `self.nbits`.
#[inline]
pub fn set_bit(&mut self, index: usize) {
bitmap_assert_return!(
index < self.len(),
"Bit `index` must be < {}, was {}",
self.len(),
index
);
// SAFETY: Bit `index` is within bounds.
unsafe { bindings::__set_bit(index, self.as_mut_ptr()) };
}
/// Set bit with index `index`, atomically.
///
/// This is a relaxed atomic operation (no implied memory barriers).
///
/// ATTENTION: The naming convention differs from C, where the corresponding
/// function is called `set_bit`.
///
/// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
/// or equal to `self.len()`, does nothing.
///
/// # Panics
///
/// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
/// or equal to `self.len()`.
#[inline]
pub fn set_bit_atomic(&self, index: usize) {
bitmap_assert_return!(
index < self.len(),
"Bit `index` must be < {}, was {}",
self.len(),
index
);
// SAFETY: `index` is within bounds and the caller has ensured that
// there is no mix of non-atomic and atomic operations.
unsafe { bindings::set_bit(index, self.as_ptr().cast_mut()) };
}
/// Clear `index` bit.
///
/// ATTENTION: `clear_bit` is non-atomic, which differs from the naming
/// convention in C code. The corresponding C function is `__clear_bit`.
///
/// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
/// or equal to `self.len()`, does nothing.
///
/// # Panics
///
/// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
/// or equal to `self.len()`.
#[inline]
pub fn clear_bit(&mut self, index: usize) {
bitmap_assert_return!(
index < self.len(),
"Bit `index` must be < {}, was {}",
self.len(),
index
);
// SAFETY: `index` is within bounds.
unsafe { bindings::__clear_bit(index, self.as_mut_ptr()) };
}
/// Clear `index` bit, atomically.
///
/// This is a relaxed atomic operation (no implied memory barriers).
///
/// ATTENTION: The naming convention differs from C, where the corresponding
/// function is called `clear_bit`.
///
/// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
/// or equal to `self.len()`, does nothing.
///
/// # Panics
///
/// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
/// or equal to `self.len()`.
#[inline]
pub fn clear_bit_atomic(&self, index: usize) {
bitmap_assert_return!(
index < self.len(),
"Bit `index` must be < {}, was {}",
self.len(),
index
);
// SAFETY: `index` is within bounds and the caller has ensured that
// there is no mix of non-atomic and atomic operations.
unsafe { bindings::clear_bit(index, self.as_ptr().cast_mut()) };
}
/// Copy `src` into this [`Bitmap`] and set any remaining bits to zero.
///
/// # Examples
///
/// ```
/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
/// use kernel::bitmap::BitmapVec;
///
/// let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
///
/// assert_eq!(None, long_bitmap.last_bit());
///
/// let mut short_bitmap = BitmapVec::new(16, GFP_KERNEL)?;
///
/// short_bitmap.set_bit(7);
/// long_bitmap.copy_and_extend(&short_bitmap);
/// assert_eq!(Some(7), long_bitmap.last_bit());
///
/// # Ok::<(), AllocError>(())
/// ```
#[inline]
pub fn copy_and_extend(&mut self, src: &Bitmap) {
let len = core::cmp::min(src.len(), self.len());
// SAFETY: access to `self` and `src` is within bounds.
unsafe {
bindings::bitmap_copy_and_extend(
self.as_mut_ptr(),
src.as_ptr(),
len as u32,
self.len() as u32,
)
};
}
/// Finds last set bit.
///
/// # Examples
///
/// ```
/// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
/// use kernel::bitmap::BitmapVec;
///
/// let bitmap = BitmapVec::new(64, GFP_KERNEL)?;
///
/// match bitmap.last_bit() {
/// Some(idx) => {
/// pr_info!("The last bit has index {idx}.\n");
/// }
/// None => {
/// pr_info!("All bits in this bitmap are 0.\n");
/// }
/// }
/// # Ok::<(), AllocError>(())
/// ```
#[inline]
pub fn last_bit(&self) -> Option<usize> {
// SAFETY: `_find_next_bit` access is within bounds due to invariant.
let index = unsafe { bindings::_find_last_bit(self.as_ptr(), self.len()) };
if index >= self.len() {
None
} else {
Some(index)
}
}
/// Finds next set bit, starting from `start`.
///
/// Returns `None` if `start` is greater or equal to `self.nbits`.
#[inline]
pub fn next_bit(&self, start: usize) -> Option<usize> {
bitmap_assert!(
start < self.len(),
"`start` must be < {} was {}",
self.len(),
start
);
// SAFETY: `_find_next_bit` tolerates out-of-bounds arguments and returns a
// value larger than or equal to `self.len()` in that case.
let index = unsafe { bindings::_find_next_bit(self.as_ptr(), self.len(), start) };
if index >= self.len() {
None
} else {
Some(index)
}
}
/// Finds next zero bit, starting from `start`.
/// Returns `None` if `start` is greater than or equal to `self.len()`.
#[inline]
pub fn next_zero_bit(&self, start: usize) -> Option<usize> {
bitmap_assert!(
start < self.len(),
"`start` must be < {} was {}",
self.len(),
start
);
// SAFETY: `_find_next_zero_bit` tolerates out-of-bounds arguments and returns a
// value larger than or equal to `self.len()` in that case.
let index = unsafe { bindings::_find_next_zero_bit(self.as_ptr(), self.len(), start) };
if index >= self.len() {
None
} else {
Some(index)
}
}
}
use macros::kunit_tests;
#[kunit_tests(rust_kernel_bitmap)]
mod tests {
use super::*;
use kernel::alloc::flags::GFP_KERNEL;
#[test]
fn bitmap_borrow() {
let fake_bitmap: [usize; 2] = [0, 0];
// SAFETY: `fake_c_bitmap` is an array of expected length.
let b = unsafe { Bitmap::from_raw(fake_bitmap.as_ptr(), 2 * BITS_PER_LONG) };
assert_eq!(2 * BITS_PER_LONG, b.len());
assert_eq!(None, b.next_bit(0));
}
#[test]
fn bitmap_copy() {
let fake_bitmap: usize = 0xFF;
// SAFETY: `fake_c_bitmap` can be used as one-element array of expected length.
let b = unsafe { Bitmap::from_raw(core::ptr::addr_of!(fake_bitmap), 8) };
assert_eq!(8, b.len());
assert_eq!(None, b.next_zero_bit(0));
}
#[test]
fn bitmap_vec_new() -> Result<(), AllocError> {
let b = BitmapVec::new(0, GFP_KERNEL)?;
assert_eq!(0, b.len());
let b = BitmapVec::new(3, GFP_KERNEL)?;
assert_eq!(3, b.len());
let b = BitmapVec::new(1024, GFP_KERNEL)?;
assert_eq!(1024, b.len());
// Requesting too large values results in [`AllocError`].
let res = BitmapVec::new(1 << 31, GFP_KERNEL);
assert!(res.is_err());
Ok(())
}
#[test]
fn bitmap_set_clear_find() -> Result<(), AllocError> {
let mut b = BitmapVec::new(128, GFP_KERNEL)?;
// Zero-initialized
assert_eq!(None, b.next_bit(0));
assert_eq!(Some(0), b.next_zero_bit(0));
assert_eq!(None, b.last_bit());
b.set_bit(17);
assert_eq!(Some(17), b.next_bit(0));
assert_eq!(Some(17), b.next_bit(17));
assert_eq!(None, b.next_bit(18));
assert_eq!(Some(17), b.last_bit());
b.set_bit(107);
assert_eq!(Some(17), b.next_bit(0));
assert_eq!(Some(17), b.next_bit(17));
assert_eq!(Some(107), b.next_bit(18));
assert_eq!(Some(107), b.last_bit());
b.clear_bit(17);
assert_eq!(Some(107), b.next_bit(0));
assert_eq!(Some(107), b.last_bit());
Ok(())
}
#[test]
fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
// TODO: Kunit #[test]s do not support `cfg` yet,
// so we add it here in the body.
#[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
{
let mut b = BitmapVec::new(128, GFP_KERNEL)?;
b.set_bit(2048);
b.set_bit_atomic(2048);
b.clear_bit(2048);
b.clear_bit_atomic(2048);
assert_eq!(None, b.next_bit(2048));
assert_eq!(None, b.next_zero_bit(2048));
assert_eq!(None, b.last_bit());
}
Ok(())
}
// TODO: uncomment once kunit supports [should_panic] and `cfg`.
// #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
// #[test]
// #[should_panic]
// fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
// let mut b = BitmapVec::new(128, GFP_KERNEL)?;
//
// b.set_bit(2048);
// }
#[test]
fn bitmap_copy_and_extend() -> Result<(), AllocError> {
let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
long_bitmap.set_bit(3);
long_bitmap.set_bit(200);
let mut short_bitmap = BitmapVec::new(32, GFP_KERNEL)?;
short_bitmap.set_bit(17);
long_bitmap.copy_and_extend(&short_bitmap);
// Previous bits have been cleared.
assert_eq!(Some(17), long_bitmap.next_bit(0));
assert_eq!(Some(17), long_bitmap.last_bit());
Ok(())
}
}