Skip to main content

syn/
parse.rs

1// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3//! Parsing interface for parsing a token stream into a syntax tree node.
4//!
5//! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
6//! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
7//! these parser functions is a lower level mechanism built around the
8//! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
9//! tokens in a token stream.
10//!
11//! [`Result<T>`]: Result
12//! [`Cursor`]: crate::buffer::Cursor
13//!
14//! # Example
15//!
16//! Here is a snippet of parsing code to get a feel for the style of the
17//! library. We define data structures for a subset of Rust syntax including
18//! enums (not shown) and structs, then provide implementations of the [`Parse`]
19//! trait to parse these syntax tree data structures from a token stream.
20//!
21//! Once `Parse` impls have been defined, they can be called conveniently from a
22//! procedural macro through [`parse_macro_input!`] as shown at the bottom of
23//! the snippet. If the caller provides syntactically invalid input to the
24//! procedural macro, they will receive a helpful compiler error message
25//! pointing out the exact token that triggered the failure to parse.
26//!
27//! [`parse_macro_input!`]: crate::parse_macro_input!
28//!
29//! ```
30//! # extern crate proc_macro;
31//! #
32//! use proc_macro::TokenStream;
33//! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
34//! use syn::parse::{Parse, ParseStream};
35//! use syn::punctuated::Punctuated;
36//!
37//! enum Item {
38//!     Struct(ItemStruct),
39//!     Enum(ItemEnum),
40//! }
41//!
42//! struct ItemStruct {
43//!     struct_token: Token![struct],
44//!     ident: Ident,
45//!     brace_token: token::Brace,
46//!     fields: Punctuated<Field, Token![,]>,
47//! }
48//! #
49//! # enum ItemEnum {}
50//!
51//! impl Parse for Item {
52//!     fn parse(input: ParseStream) -> Result<Self> {
53//!         let lookahead = input.lookahead1();
54//!         if lookahead.peek(Token![struct]) {
55//!             input.parse().map(Item::Struct)
56//!         } else if lookahead.peek(Token![enum]) {
57//!             input.parse().map(Item::Enum)
58//!         } else {
59//!             Err(lookahead.error())
60//!         }
61//!     }
62//! }
63//!
64//! impl Parse for ItemStruct {
65//!     fn parse(input: ParseStream) -> Result<Self> {
66//!         let content;
67//!         Ok(ItemStruct {
68//!             struct_token: input.parse()?,
69//!             ident: input.parse()?,
70//!             brace_token: braced!(content in input),
71//!             fields: content.parse_terminated(Field::parse_named, Token![,])?,
72//!         })
73//!     }
74//! }
75//! #
76//! # impl Parse for ItemEnum {
77//! #     fn parse(input: ParseStream) -> Result<Self> {
78//! #         unimplemented!()
79//! #     }
80//! # }
81//!
82//! # const IGNORE: &str = stringify! {
83//! #[proc_macro]
84//! # };
85//! pub fn my_macro(tokens: TokenStream) -> TokenStream {
86//!     let input = parse_macro_input!(tokens as Item);
87//!
88//!     /* ... */
89//! #   TokenStream::new()
90//! }
91//! ```
92//!
93//! # The `syn::parse*` functions
94//!
95//! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
96//! as an entry point for parsing syntax tree nodes that can be parsed in an
97//! obvious default way. These functions can return any syntax tree node that
98//! implements the [`Parse`] trait, which includes most types in Syn.
99//!
100//! [`syn::parse`]: crate::parse()
101//! [`syn::parse2`]: crate::parse2()
102//! [`syn::parse_str`]: crate::parse_str()
103//!
104//! ```
105//! use syn::Type;
106//!
107//! # fn run_parser() -> syn::Result<()> {
108//! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
109//! #     Ok(())
110//! # }
111//! #
112//! # run_parser().unwrap();
113//! ```
114//!
115//! The [`parse_quote!`] macro also uses this approach.
116//!
117//! [`parse_quote!`]: crate::parse_quote!
118//!
119//! # The `Parser` trait
120//!
121//! Some types can be parsed in several ways depending on context. For example
122//! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
123//! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
124//! may or may not allow trailing punctuation, and parsing it the wrong way
125//! would either reject valid input or accept invalid input.
126//!
127//! [`Attribute`]: crate::Attribute
128//! [`Punctuated`]: crate::punctuated
129//!
130//! The `Parse` trait is not implemented in these cases because there is no good
131//! behavior to consider the default.
132//!
133//! ```compile_fail
134//! # extern crate proc_macro;
135//! #
136//! # use syn::punctuated::Punctuated;
137//! # use syn::{PathSegment, Result, Token};
138//! #
139//! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
140//! #
141//! // Can't parse `Punctuated` without knowing whether trailing punctuation
142//! // should be allowed in this context.
143//! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
144//! #
145//! #     Ok(())
146//! # }
147//! ```
148//!
149//! In these cases the types provide a choice of parser functions rather than a
150//! single `Parse` implementation, and those parser functions can be invoked
151//! through the [`Parser`] trait.
152//!
153//!
154//! ```
155//! # extern crate proc_macro;
156//! #
157//! use proc_macro::TokenStream;
158//! use syn::parse::Parser;
159//! use syn::punctuated::Punctuated;
160//! use syn::{Attribute, Expr, PathSegment, Result, Token};
161//!
162//! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
163//!     // Parse a nonempty sequence of path segments separated by `::` punctuation
164//!     // with no trailing punctuation.
165//!     let tokens = input.clone();
166//!     let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
167//!     let _path = parser.parse(tokens)?;
168//!
169//!     // Parse a possibly empty sequence of expressions terminated by commas with
170//!     // an optional trailing punctuation.
171//!     let tokens = input.clone();
172//!     let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
173//!     let _args = parser.parse(tokens)?;
174//!
175//!     // Parse zero or more outer attributes but not inner attributes.
176//!     let tokens = input.clone();
177//!     let parser = Attribute::parse_outer;
178//!     let _attrs = parser.parse(tokens)?;
179//!
180//!     Ok(())
181//! }
182//! ```
183
184#[path = "discouraged.rs"]
185pub mod discouraged;
186
187use crate::buffer::{Cursor, TokenBuffer};
188use crate::error;
189use crate::lookahead;
190use crate::punctuated::Punctuated;
191use crate::token::Token;
192use proc_macro2::{Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
193#[cfg(feature = "printing")]
194use quote::ToTokens;
195use std::cell::Cell;
196use std::fmt::{self, Debug, Display};
197#[cfg(feature = "extra-traits")]
198use std::hash::{Hash, Hasher};
199use std::marker::PhantomData;
200use std::mem;
201use std::ops::Deref;
202use std::panic::{RefUnwindSafe, UnwindSafe};
203use std::rc::Rc;
204use std::str::FromStr;
205
206pub use crate::error::{Error, Result};
207pub use crate::lookahead::{End, Lookahead1, Peek};
208
209/// Parsing interface implemented by all types that can be parsed in a default
210/// way from a token stream.
211///
212/// Refer to the [module documentation] for details about implementing and using
213/// the `Parse` trait.
214///
215/// [module documentation]: self
216pub trait Parse: Sized {
217    fn parse(input: ParseStream) -> Result<Self>;
218}
219
220/// Input to a Syn parser function.
221///
222/// See the methods of this type under the documentation of [`ParseBuffer`]. For
223/// an overview of parsing in Syn, refer to the [module documentation].
224///
225/// [module documentation]: self
226pub type ParseStream<'a> = &'a ParseBuffer<'a>;
227
228/// Cursor position within a buffered token stream.
229///
230/// This type is more commonly used through the type alias [`ParseStream`] which
231/// is an alias for `&ParseBuffer`.
232///
233/// `ParseStream` is the input type for all parser functions in Syn. They have
234/// the signature `fn(ParseStream) -> Result<T>`.
235///
236/// ## Calling a parser function
237///
238/// There is no public way to construct a `ParseBuffer`. Instead, if you are
239/// looking to invoke a parser function that requires `ParseStream` as input,
240/// you will need to go through one of the public parsing entry points.
241///
242/// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
243/// - One of [the `syn::parse*` functions][syn-parse]; or
244/// - A method of the [`Parser`] trait.
245///
246/// [`parse_macro_input!`]: crate::parse_macro_input!
247/// [syn-parse]: self#the-synparse-functions
248pub struct ParseBuffer<'a> {
249    scope: Span,
250    // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
251    // The rest of the code in this module needs to be careful that only a
252    // cursor derived from this `cell` is ever assigned to this `cell`.
253    //
254    // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
255    // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
256    // than 'a, and then assign a Cursor<'short> into the Cell.
257    //
258    // By extension, it would not be safe to expose an API that accepts a
259    // Cursor<'a> and trusts that it lives as long as the cursor currently in
260    // the cell.
261    cell: Cell<Cursor<'static>>,
262    marker: PhantomData<Cursor<'a>>,
263    unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
264}
265
266impl<'a> Drop for ParseBuffer<'a> {
267    fn drop(&mut self) {
268        if let Some((unexpected_span, delimiter)) = span_of_unexpected_ignoring_nones(self.cursor())
269        {
270            let (inner, old_span) = inner_unexpected(self);
271            if old_span.is_none() {
272                inner.set(Unexpected::Some(unexpected_span, delimiter));
273            }
274        }
275    }
276}
277
278impl<'a> Display for ParseBuffer<'a> {
279    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
280        Display::fmt(&self.cursor().token_stream(), f)
281    }
282}
283
284impl<'a> Debug for ParseBuffer<'a> {
285    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
286        Debug::fmt(&self.cursor().token_stream(), f)
287    }
288}
289
290impl<'a> UnwindSafe for ParseBuffer<'a> {}
291impl<'a> RefUnwindSafe for ParseBuffer<'a> {}
292
293/// Cursor state associated with speculative parsing.
294///
295/// This type is the input of the closure provided to [`ParseStream::step`].
296///
297/// [`ParseStream::step`]: ParseBuffer::step
298///
299/// # Example
300///
301/// ```
302/// use proc_macro2::TokenTree;
303/// use syn::Result;
304/// use syn::parse::ParseStream;
305///
306/// // This function advances the stream past the next occurrence of `@`. If
307/// // no `@` is present in the stream, the stream position is unchanged and
308/// // an error is returned.
309/// fn skip_past_next_at(input: ParseStream) -> Result<()> {
310///     input.step(|cursor| {
311///         let mut rest = *cursor;
312///         while let Some((tt, next)) = rest.token_tree() {
313///             match &tt {
314///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
315///                     return Ok(((), next));
316///                 }
317///                 _ => rest = next,
318///             }
319///         }
320///         Err(cursor.error("no `@` was found after this point"))
321///     })
322/// }
323/// #
324/// # fn remainder_after_skipping_past_next_at(
325/// #     input: ParseStream,
326/// # ) -> Result<proc_macro2::TokenStream> {
327/// #     skip_past_next_at(input)?;
328/// #     input.parse()
329/// # }
330/// #
331/// # use syn::parse::Parser;
332/// # let remainder = remainder_after_skipping_past_next_at
333/// #     .parse_str("a @ b c")
334/// #     .unwrap();
335/// # assert_eq!(remainder.to_string(), "b c");
336/// ```
337pub struct StepCursor<'c, 'a> {
338    scope: Span,
339    // This field is covariant in 'c.
340    cursor: Cursor<'c>,
341    // This field is contravariant in 'c. Together these make StepCursor
342    // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
343    // different lifetime but can upcast into a StepCursor with a shorter
344    // lifetime 'a.
345    //
346    // As long as we only ever construct a StepCursor for which 'c outlives 'a,
347    // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
348    // outlives 'a.
349    marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
350}
351
352impl<'c, 'a> Deref for StepCursor<'c, 'a> {
353    type Target = Cursor<'c>;
354
355    fn deref(&self) -> &Self::Target {
356        &self.cursor
357    }
358}
359
360impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
361
362impl<'c, 'a> Clone for StepCursor<'c, 'a> {
363    fn clone(&self) -> Self {
364        *self
365    }
366}
367
368impl<'c, 'a> StepCursor<'c, 'a> {
369    /// Triggers an error at the current position of the parse stream.
370    ///
371    /// The `ParseStream::step` invocation will return this same error without
372    /// advancing the stream state.
373    pub fn error<T: Display>(self, message: T) -> Error {
374        error::new_at(self.scope, self.cursor, message)
375    }
376}
377
378pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
379    // Refer to the comments within the StepCursor definition. We use the
380    // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
381    // Cursor is covariant in its lifetime parameter so we can cast a
382    // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
383    let _ = proof;
384    unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
385}
386
387pub(crate) fn new_parse_buffer(
388    scope: Span,
389    cursor: Cursor,
390    unexpected: Rc<Cell<Unexpected>>,
391) -> ParseBuffer {
392    ParseBuffer {
393        scope,
394        // See comment on `cell` in the struct definition.
395        cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
396        marker: PhantomData,
397        unexpected: Cell::new(Some(unexpected)),
398    }
399}
400
401pub(crate) enum Unexpected {
402    None,
403    Some(Span, Delimiter),
404    Chain(Rc<Cell<Unexpected>>),
405}
406
407impl Default for Unexpected {
408    fn default() -> Self {
409        Unexpected::None
410    }
411}
412
413impl Clone for Unexpected {
414    fn clone(&self) -> Self {
415        match self {
416            Unexpected::None => Unexpected::None,
417            Unexpected::Some(span, delimiter) => Unexpected::Some(*span, *delimiter),
418            Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
419        }
420    }
421}
422
423// We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
424// swapping in a None is cheap.
425fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
426    let prev = cell.take();
427    let ret = prev.clone();
428    cell.set(prev);
429    ret
430}
431
432fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<(Span, Delimiter)>) {
433    let mut unexpected = get_unexpected(buffer);
434    loop {
435        match cell_clone(&unexpected) {
436            Unexpected::None => return (unexpected, None),
437            Unexpected::Some(span, delimiter) => return (unexpected, Some((span, delimiter))),
438            Unexpected::Chain(next) => unexpected = next,
439        }
440    }
441}
442
443pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
444    cell_clone(&buffer.unexpected).unwrap()
445}
446
447fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<(Span, Delimiter)> {
448    if cursor.eof() {
449        return None;
450    }
451    while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
452        if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
453            return Some(unexpected);
454        }
455        cursor = rest;
456    }
457    if cursor.eof() {
458        None
459    } else {
460        Some((cursor.span(), cursor.scope_delimiter()))
461    }
462}
463
464impl<'a> ParseBuffer<'a> {
465    /// Parses a syntax tree node of type `T`, advancing the position of our
466    /// parse stream past it.
467    pub fn parse<T: Parse>(&self) -> Result<T> {
468        T::parse(self)
469    }
470
471    /// Calls the given parser function to parse a syntax tree node of type `T`
472    /// from this stream.
473    ///
474    /// # Example
475    ///
476    /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
477    /// zero or more outer attributes.
478    ///
479    /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
480    ///
481    /// ```
482    /// use syn::{Attribute, Ident, Result, Token};
483    /// use syn::parse::{Parse, ParseStream};
484    ///
485    /// // Parses a unit struct with attributes.
486    /// //
487    /// //     #[path = "s.tmpl"]
488    /// //     struct S;
489    /// struct UnitStruct {
490    ///     attrs: Vec<Attribute>,
491    ///     struct_token: Token![struct],
492    ///     name: Ident,
493    ///     semi_token: Token![;],
494    /// }
495    ///
496    /// impl Parse for UnitStruct {
497    ///     fn parse(input: ParseStream) -> Result<Self> {
498    ///         Ok(UnitStruct {
499    ///             attrs: input.call(Attribute::parse_outer)?,
500    ///             struct_token: input.parse()?,
501    ///             name: input.parse()?,
502    ///             semi_token: input.parse()?,
503    ///         })
504    ///     }
505    /// }
506    /// ```
507    pub fn call<T>(&'a self, function: fn(ParseStream<'a>) -> Result<T>) -> Result<T> {
508        function(self)
509    }
510
511    /// Looks at the next token in the parse stream to determine whether it
512    /// matches the requested type of token.
513    ///
514    /// Does not advance the position of the parse stream.
515    ///
516    /// # Syntax
517    ///
518    /// Note that this method does not use turbofish syntax. Pass the peek type
519    /// inside of parentheses.
520    ///
521    /// - `input.peek(Token![struct])`
522    /// - `input.peek(Token![==])`
523    /// - `input.peek(syn::Ident)`&emsp;*(does not accept keywords)*
524    /// - `input.peek(syn::Ident::peek_any)`
525    /// - `input.peek(Lifetime)`
526    /// - `input.peek(token::Brace)`
527    ///
528    /// # Example
529    ///
530    /// In this example we finish parsing the list of supertraits when the next
531    /// token in the input is either `where` or an opening curly brace.
532    ///
533    /// ```
534    /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
535    /// use syn::parse::{Parse, ParseStream};
536    /// use syn::punctuated::Punctuated;
537    ///
538    /// // Parses a trait definition containing no associated items.
539    /// //
540    /// //     trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
541    /// struct MarkerTrait {
542    ///     trait_token: Token![trait],
543    ///     ident: Ident,
544    ///     generics: Generics,
545    ///     colon_token: Option<Token![:]>,
546    ///     supertraits: Punctuated<TypeParamBound, Token![+]>,
547    ///     brace_token: token::Brace,
548    /// }
549    ///
550    /// impl Parse for MarkerTrait {
551    ///     fn parse(input: ParseStream) -> Result<Self> {
552    ///         let trait_token: Token![trait] = input.parse()?;
553    ///         let ident: Ident = input.parse()?;
554    ///         let mut generics: Generics = input.parse()?;
555    ///         let colon_token: Option<Token![:]> = input.parse()?;
556    ///
557    ///         let mut supertraits = Punctuated::new();
558    ///         if colon_token.is_some() {
559    ///             loop {
560    ///                 supertraits.push_value(input.parse()?);
561    ///                 if input.peek(Token![where]) || input.peek(token::Brace) {
562    ///                     break;
563    ///                 }
564    ///                 supertraits.push_punct(input.parse()?);
565    ///             }
566    ///         }
567    ///
568    ///         generics.where_clause = input.parse()?;
569    ///         let content;
570    ///         let empty_brace_token = braced!(content in input);
571    ///
572    ///         Ok(MarkerTrait {
573    ///             trait_token,
574    ///             ident,
575    ///             generics,
576    ///             colon_token,
577    ///             supertraits,
578    ///             brace_token: empty_brace_token,
579    ///         })
580    ///     }
581    /// }
582    /// ```
583    pub fn peek<T: Peek>(&self, token: T) -> bool {
584        let _ = token;
585        T::Token::peek(self.cursor())
586    }
587
588    /// Looks at the second-next token in the parse stream.
589    ///
590    /// This is commonly useful as a way to implement contextual keywords.
591    ///
592    /// # Example
593    ///
594    /// This example needs to use `peek2` because the symbol `union` is not a
595    /// keyword in Rust. We can't use just `peek` and decide to parse a union if
596    /// the very next token is `union`, because someone is free to write a `mod
597    /// union` and a macro invocation that looks like `union::some_macro! { ...
598    /// }`. In other words `union` is a contextual keyword.
599    ///
600    /// ```
601    /// use syn::{Ident, ItemUnion, Macro, Result, Token};
602    /// use syn::parse::{Parse, ParseStream};
603    ///
604    /// // Parses either a union or a macro invocation.
605    /// enum UnionOrMacro {
606    ///     // union MaybeUninit<T> { uninit: (), value: T }
607    ///     Union(ItemUnion),
608    ///     // lazy_static! { ... }
609    ///     Macro(Macro),
610    /// }
611    ///
612    /// impl Parse for UnionOrMacro {
613    ///     fn parse(input: ParseStream) -> Result<Self> {
614    ///         if input.peek(Token![union]) && input.peek2(Ident) {
615    ///             input.parse().map(UnionOrMacro::Union)
616    ///         } else {
617    ///             input.parse().map(UnionOrMacro::Macro)
618    ///         }
619    ///     }
620    /// }
621    /// ```
622    pub fn peek2<T: Peek>(&self, token: T) -> bool {
623        fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
624            buffer.cursor().skip().map_or(false, peek)
625        }
626
627        let _ = token;
628        peek2(self, T::Token::peek)
629    }
630
631    /// Looks at the third-next token in the parse stream.
632    pub fn peek3<T: Peek>(&self, token: T) -> bool {
633        fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
634            buffer
635                .cursor()
636                .skip()
637                .and_then(Cursor::skip)
638                .map_or(false, peek)
639        }
640
641        let _ = token;
642        peek3(self, T::Token::peek)
643    }
644
645    /// Parses zero or more occurrences of `T` separated by punctuation of type
646    /// `P`, with optional trailing punctuation.
647    ///
648    /// Parsing continues until the end of this parse stream. The entire content
649    /// of this parse stream must consist of `T` and `P`.
650    ///
651    /// # Example
652    ///
653    /// ```
654    /// # use quote::quote;
655    /// #
656    /// use syn::{parenthesized, token, Ident, Result, Token, Type};
657    /// use syn::parse::{Parse, ParseStream};
658    /// use syn::punctuated::Punctuated;
659    ///
660    /// // Parse a simplified tuple struct syntax like:
661    /// //
662    /// //     struct S(A, B);
663    /// struct TupleStruct {
664    ///     struct_token: Token![struct],
665    ///     ident: Ident,
666    ///     paren_token: token::Paren,
667    ///     fields: Punctuated<Type, Token![,]>,
668    ///     semi_token: Token![;],
669    /// }
670    ///
671    /// impl Parse for TupleStruct {
672    ///     fn parse(input: ParseStream) -> Result<Self> {
673    ///         let content;
674    ///         Ok(TupleStruct {
675    ///             struct_token: input.parse()?,
676    ///             ident: input.parse()?,
677    ///             paren_token: parenthesized!(content in input),
678    ///             fields: content.parse_terminated(Type::parse, Token![,])?,
679    ///             semi_token: input.parse()?,
680    ///         })
681    ///     }
682    /// }
683    /// #
684    /// # let input = quote! {
685    /// #     struct S(A, B);
686    /// # };
687    /// # syn::parse2::<TupleStruct>(input).unwrap();
688    /// ```
689    ///
690    /// # See also
691    ///
692    /// If your separator is anything more complicated than an invocation of the
693    /// `Token!` macro, this method won't be applicable and you can instead
694    /// directly use `Punctuated`'s parser functions: [`parse_terminated`],
695    /// [`parse_separated_nonempty`] etc.
696    ///
697    /// [`parse_terminated`]: Punctuated::parse_terminated
698    /// [`parse_separated_nonempty`]: Punctuated::parse_separated_nonempty
699    ///
700    /// ```
701    /// use syn::{custom_keyword, Expr, Result, Token};
702    /// use syn::parse::{Parse, ParseStream};
703    /// use syn::punctuated::Punctuated;
704    ///
705    /// mod kw {
706    ///     syn::custom_keyword!(fin);
707    /// }
708    ///
709    /// struct Fin(kw::fin, Token![;]);
710    ///
711    /// impl Parse for Fin {
712    ///     fn parse(input: ParseStream) -> Result<Self> {
713    ///         Ok(Self(input.parse()?, input.parse()?))
714    ///     }
715    /// }
716    ///
717    /// struct Thing {
718    ///     steps: Punctuated<Expr, Fin>,
719    /// }
720    ///
721    /// impl Parse for Thing {
722    ///     fn parse(input: ParseStream) -> Result<Self> {
723    /// # if true {
724    ///         Ok(Thing {
725    ///             steps: Punctuated::parse_terminated(input)?,
726    ///         })
727    /// # } else {
728    ///         // or equivalently, this means the same thing:
729    /// #       Ok(Thing {
730    ///             steps: input.call(Punctuated::parse_terminated)?,
731    /// #       })
732    /// # }
733    ///     }
734    /// }
735    /// ```
736    pub fn parse_terminated<T, P>(
737        &'a self,
738        parser: fn(ParseStream<'a>) -> Result<T>,
739        separator: P,
740    ) -> Result<Punctuated<T, P::Token>>
741    where
742        P: Peek,
743        P::Token: Parse,
744    {
745        let _ = separator;
746        Punctuated::parse_terminated_with(self, parser)
747    }
748
749    /// Returns whether there are no more tokens remaining to be parsed from
750    /// this stream.
751    ///
752    /// This method returns true upon reaching the end of the content within a
753    /// set of delimiters, as well as at the end of the tokens provided to the
754    /// outermost parsing entry point.
755    ///
756    /// This is equivalent to
757    /// <code>.<a href="#method.peek">peek</a>(<a href="struct.End.html">syn::parse::End</a>)</code>.
758    /// Use `.peek2(End)` or `.peek3(End)` to look for the end of a parse stream
759    /// further ahead than the current position.
760    ///
761    /// # Example
762    ///
763    /// ```
764    /// use syn::{braced, token, Ident, Item, Result, Token};
765    /// use syn::parse::{Parse, ParseStream};
766    ///
767    /// // Parses a Rust `mod m { ... }` containing zero or more items.
768    /// struct Mod {
769    ///     mod_token: Token![mod],
770    ///     name: Ident,
771    ///     brace_token: token::Brace,
772    ///     items: Vec<Item>,
773    /// }
774    ///
775    /// impl Parse for Mod {
776    ///     fn parse(input: ParseStream) -> Result<Self> {
777    ///         let content;
778    ///         Ok(Mod {
779    ///             mod_token: input.parse()?,
780    ///             name: input.parse()?,
781    ///             brace_token: braced!(content in input),
782    ///             items: {
783    ///                 let mut items = Vec::new();
784    ///                 while !content.is_empty() {
785    ///                     items.push(content.parse()?);
786    ///                 }
787    ///                 items
788    ///             },
789    ///         })
790    ///     }
791    /// }
792    /// ```
793    pub fn is_empty(&self) -> bool {
794        self.cursor().eof()
795    }
796
797    /// Constructs a helper for peeking at the next token in this stream and
798    /// building an error message if it is not one of a set of expected tokens.
799    ///
800    /// # Example
801    ///
802    /// ```
803    /// use syn::{ConstParam, Ident, Lifetime, LifetimeParam, Result, Token, TypeParam};
804    /// use syn::parse::{Parse, ParseStream};
805    ///
806    /// // A generic parameter, a single one of the comma-separated elements inside
807    /// // angle brackets in:
808    /// //
809    /// //     fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
810    /// //
811    /// // On invalid input, lookahead gives us a reasonable error message.
812    /// //
813    /// //     error: expected one of: identifier, lifetime, `const`
814    /// //       |
815    /// //     5 |     fn f<!Sized>() {}
816    /// //       |          ^
817    /// enum GenericParam {
818    ///     Type(TypeParam),
819    ///     Lifetime(LifetimeParam),
820    ///     Const(ConstParam),
821    /// }
822    ///
823    /// impl Parse for GenericParam {
824    ///     fn parse(input: ParseStream) -> Result<Self> {
825    ///         let lookahead = input.lookahead1();
826    ///         if lookahead.peek(Ident) {
827    ///             input.parse().map(GenericParam::Type)
828    ///         } else if lookahead.peek(Lifetime) {
829    ///             input.parse().map(GenericParam::Lifetime)
830    ///         } else if lookahead.peek(Token![const]) {
831    ///             input.parse().map(GenericParam::Const)
832    ///         } else {
833    ///             Err(lookahead.error())
834    ///         }
835    ///     }
836    /// }
837    /// ```
838    pub fn lookahead1(&self) -> Lookahead1<'a> {
839        lookahead::new(self.scope, self.cursor())
840    }
841
842    /// Forks a parse stream so that parsing tokens out of either the original
843    /// or the fork does not advance the position of the other.
844    ///
845    /// # Performance
846    ///
847    /// Forking a parse stream is a cheap fixed amount of work and does not
848    /// involve copying token buffers. Where you might hit performance problems
849    /// is if your macro ends up parsing a large amount of content more than
850    /// once.
851    ///
852    /// ```
853    /// # use syn::{Expr, Result};
854    /// # use syn::parse::ParseStream;
855    /// #
856    /// # fn bad(input: ParseStream) -> Result<Expr> {
857    /// // Do not do this.
858    /// if input.fork().parse::<Expr>().is_ok() {
859    ///     return input.parse::<Expr>();
860    /// }
861    /// # unimplemented!()
862    /// # }
863    /// ```
864    ///
865    /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
866    /// parse stream. Only use a fork when the amount of work performed against
867    /// the fork is small and bounded.
868    ///
869    /// When complex speculative parsing against the forked stream is
870    /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
871    /// original stream once the fork's parse is determined to have been
872    /// successful.
873    ///
874    /// For a lower level way to perform speculative parsing at the token level,
875    /// consider using [`ParseStream::step`] instead.
876    ///
877    /// [`parse::discouraged::Speculative`]: discouraged::Speculative
878    /// [`ParseStream::step`]: ParseBuffer::step
879    ///
880    /// # Example
881    ///
882    /// The parse implementation shown here parses possibly restricted `pub`
883    /// visibilities.
884    ///
885    /// - `pub`
886    /// - `pub(crate)`
887    /// - `pub(self)`
888    /// - `pub(super)`
889    /// - `pub(in some::path)`
890    ///
891    /// To handle the case of visibilities inside of tuple structs, the parser
892    /// needs to distinguish parentheses that specify visibility restrictions
893    /// from parentheses that form part of a tuple type.
894    ///
895    /// ```
896    /// # struct A;
897    /// # struct B;
898    /// # struct C;
899    /// #
900    /// struct S(pub(crate) A, pub (B, C));
901    /// ```
902    ///
903    /// In this example input the first tuple struct element of `S` has
904    /// `pub(crate)` visibility while the second tuple struct element has `pub`
905    /// visibility; the parentheses around `(B, C)` are part of the type rather
906    /// than part of a visibility restriction.
907    ///
908    /// The parser uses a forked parse stream to check the first token inside of
909    /// parentheses after the `pub` keyword. This is a small bounded amount of
910    /// work performed against the forked parse stream.
911    ///
912    /// ```
913    /// use syn::{parenthesized, token, Ident, Path, Result, Token};
914    /// use syn::ext::IdentExt;
915    /// use syn::parse::{Parse, ParseStream};
916    ///
917    /// struct PubVisibility {
918    ///     pub_token: Token![pub],
919    ///     restricted: Option<Restricted>,
920    /// }
921    ///
922    /// struct Restricted {
923    ///     paren_token: token::Paren,
924    ///     in_token: Option<Token![in]>,
925    ///     path: Path,
926    /// }
927    ///
928    /// impl Parse for PubVisibility {
929    ///     fn parse(input: ParseStream) -> Result<Self> {
930    ///         let pub_token: Token![pub] = input.parse()?;
931    ///
932    ///         if input.peek(token::Paren) {
933    ///             let ahead = input.fork();
934    ///             let mut content;
935    ///             parenthesized!(content in ahead);
936    ///
937    ///             if content.peek(Token![crate])
938    ///                 || content.peek(Token![self])
939    ///                 || content.peek(Token![super])
940    ///             {
941    ///                 return Ok(PubVisibility {
942    ///                     pub_token,
943    ///                     restricted: Some(Restricted {
944    ///                         paren_token: parenthesized!(content in input),
945    ///                         in_token: None,
946    ///                         path: Path::from(content.call(Ident::parse_any)?),
947    ///                     }),
948    ///                 });
949    ///             } else if content.peek(Token![in]) {
950    ///                 return Ok(PubVisibility {
951    ///                     pub_token,
952    ///                     restricted: Some(Restricted {
953    ///                         paren_token: parenthesized!(content in input),
954    ///                         in_token: Some(content.parse()?),
955    ///                         path: content.call(Path::parse_mod_style)?,
956    ///                     }),
957    ///                 });
958    ///             }
959    ///         }
960    ///
961    ///         Ok(PubVisibility {
962    ///             pub_token,
963    ///             restricted: None,
964    ///         })
965    ///     }
966    /// }
967    /// ```
968    pub fn fork(&self) -> Self {
969        ParseBuffer {
970            scope: self.scope,
971            cell: self.cell.clone(),
972            marker: PhantomData,
973            // Not the parent's unexpected. Nothing cares whether the clone
974            // parses all the way unless we `advance_to`.
975            unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
976        }
977    }
978
979    /// Triggers an error at the current position of the parse stream.
980    ///
981    /// # Example
982    ///
983    /// ```
984    /// use syn::{Expr, Result, Token};
985    /// use syn::parse::{Parse, ParseStream};
986    ///
987    /// // Some kind of loop: `while` or `for` or `loop`.
988    /// struct Loop {
989    ///     expr: Expr,
990    /// }
991    ///
992    /// impl Parse for Loop {
993    ///     fn parse(input: ParseStream) -> Result<Self> {
994    ///         if input.peek(Token![while])
995    ///             || input.peek(Token![for])
996    ///             || input.peek(Token![loop])
997    ///         {
998    ///             Ok(Loop {
999    ///                 expr: input.parse()?,
1000    ///             })
1001    ///         } else {
1002    ///             Err(input.error("expected some kind of loop"))
1003    ///         }
1004    ///     }
1005    /// }
1006    /// ```
1007    pub fn error<T: Display>(&self, message: T) -> Error {
1008        error::new_at(self.scope, self.cursor(), message)
1009    }
1010
1011    /// Speculatively parses tokens from this parse stream, advancing the
1012    /// position of this stream only if parsing succeeds.
1013    ///
1014    /// This is a powerful low-level API used for defining the `Parse` impls of
1015    /// the basic built-in token types. It is not something that will be used
1016    /// widely outside of the Syn codebase.
1017    ///
1018    /// # Example
1019    ///
1020    /// ```
1021    /// use proc_macro2::TokenTree;
1022    /// use syn::Result;
1023    /// use syn::parse::ParseStream;
1024    ///
1025    /// // This function advances the stream past the next occurrence of `@`. If
1026    /// // no `@` is present in the stream, the stream position is unchanged and
1027    /// // an error is returned.
1028    /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
1029    ///     input.step(|cursor| {
1030    ///         let mut rest = *cursor;
1031    ///         while let Some((tt, next)) = rest.token_tree() {
1032    ///             match &tt {
1033    ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
1034    ///                     return Ok(((), next));
1035    ///                 }
1036    ///                 _ => rest = next,
1037    ///             }
1038    ///         }
1039    ///         Err(cursor.error("no `@` was found after this point"))
1040    ///     })
1041    /// }
1042    /// #
1043    /// # fn remainder_after_skipping_past_next_at(
1044    /// #     input: ParseStream,
1045    /// # ) -> Result<proc_macro2::TokenStream> {
1046    /// #     skip_past_next_at(input)?;
1047    /// #     input.parse()
1048    /// # }
1049    /// #
1050    /// # use syn::parse::Parser;
1051    /// # let remainder = remainder_after_skipping_past_next_at
1052    /// #     .parse_str("a @ b c")
1053    /// #     .unwrap();
1054    /// # assert_eq!(remainder.to_string(), "b c");
1055    /// ```
1056    pub fn step<F, R>(&self, function: F) -> Result<R>
1057    where
1058        F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
1059    {
1060        // Since the user's function is required to work for any 'c, we know
1061        // that the Cursor<'c> they return is either derived from the input
1062        // StepCursor<'c, 'a> or from a Cursor<'static>.
1063        //
1064        // It would not be legal to write this function without the invariant
1065        // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
1066        // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
1067        // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
1068        // `step` on their ParseBuffer<'short> with a closure that returns
1069        // Cursor<'short>, and we would wrongly write that Cursor<'short> into
1070        // the Cell intended to hold Cursor<'a>.
1071        //
1072        // In some cases it may be necessary for R to contain a Cursor<'a>.
1073        // Within Syn we solve this using `advance_step_cursor` which uses the
1074        // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
1075        // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
1076        // safe to expose that API as a method on StepCursor.
1077        let (node, rest) = function(StepCursor {
1078            scope: self.scope,
1079            cursor: self.cell.get(),
1080            marker: PhantomData,
1081        })?;
1082        self.cell.set(rest);
1083        Ok(node)
1084    }
1085
1086    /// Returns the `Span` of the next token in the parse stream, or
1087    /// `Span::call_site()` if this parse stream has completely exhausted its
1088    /// input `TokenStream`.
1089    pub fn span(&self) -> Span {
1090        let cursor = self.cursor();
1091        if cursor.eof() {
1092            self.scope
1093        } else {
1094            crate::buffer::open_span_of_group(cursor)
1095        }
1096    }
1097
1098    /// Provides low-level access to the token representation underlying this
1099    /// parse stream.
1100    ///
1101    /// Cursors are immutable so no operations you perform against the cursor
1102    /// will affect the state of this parse stream.
1103    ///
1104    /// # Example
1105    ///
1106    /// ```
1107    /// use proc_macro2::TokenStream;
1108    /// use syn::buffer::Cursor;
1109    /// use syn::parse::{ParseStream, Result};
1110    ///
1111    /// // Run a parser that returns T, but get its output as TokenStream instead of T.
1112    /// // This works without T needing to implement ToTokens.
1113    /// fn recognize_token_stream<T>(
1114    ///     recognizer: fn(ParseStream) -> Result<T>,
1115    /// ) -> impl Fn(ParseStream) -> Result<TokenStream> {
1116    ///     move |input| {
1117    ///         let begin = input.cursor();
1118    ///         recognizer(input)?;
1119    ///         let end = input.cursor();
1120    ///         Ok(tokens_between(begin, end))
1121    ///     }
1122    /// }
1123    ///
1124    /// // Collect tokens between two cursors as a TokenStream.
1125    /// fn tokens_between(begin: Cursor, end: Cursor) -> TokenStream {
1126    ///     assert!(begin <= end);
1127    ///
1128    ///     let mut cursor = begin;
1129    ///     let mut tokens = TokenStream::new();
1130    ///     while cursor < end {
1131    ///         let (token, next) = cursor.token_tree().unwrap();
1132    ///         tokens.extend(std::iter::once(token));
1133    ///         cursor = next;
1134    ///     }
1135    ///     tokens
1136    /// }
1137    ///
1138    /// fn main() {
1139    ///     use quote::quote;
1140    ///     use syn::parse::{Parse, Parser};
1141    ///     use syn::Token;
1142    ///
1143    ///     // Parse syn::Type as a TokenStream, surrounded by angle brackets.
1144    ///     fn example(input: ParseStream) -> Result<TokenStream> {
1145    ///         let _langle: Token![<] = input.parse()?;
1146    ///         let ty = recognize_token_stream(syn::Type::parse)(input)?;
1147    ///         let _rangle: Token![>] = input.parse()?;
1148    ///         Ok(ty)
1149    ///     }
1150    ///
1151    ///     let tokens = quote! { <fn() -> u8> };
1152    ///     println!("{}", example.parse2(tokens).unwrap());
1153    /// }
1154    /// ```
1155    pub fn cursor(&self) -> Cursor<'a> {
1156        self.cell.get()
1157    }
1158
1159    fn check_unexpected(&self) -> Result<()> {
1160        match inner_unexpected(self).1 {
1161            Some((span, delimiter)) => Err(err_unexpected_token(span, delimiter)),
1162            None => Ok(()),
1163        }
1164    }
1165}
1166
1167#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1168impl<T: Parse> Parse for Box<T> {
1169    fn parse(input: ParseStream) -> Result<Self> {
1170        input.parse().map(Box::new)
1171    }
1172}
1173
1174#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1175impl<T: Parse + Token> Parse for Option<T> {
1176    fn parse(input: ParseStream) -> Result<Self> {
1177        if T::peek(input.cursor()) {
1178            Ok(Some(input.parse()?))
1179        } else {
1180            Ok(None)
1181        }
1182    }
1183}
1184
1185#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1186impl Parse for TokenStream {
1187    fn parse(input: ParseStream) -> Result<Self> {
1188        input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1189    }
1190}
1191
1192#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1193impl Parse for TokenTree {
1194    fn parse(input: ParseStream) -> Result<Self> {
1195        input.step(|cursor| match cursor.token_tree() {
1196            Some((tt, rest)) => Ok((tt, rest)),
1197            None => Err(cursor.error("expected token tree")),
1198        })
1199    }
1200}
1201
1202#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1203impl Parse for Group {
1204    fn parse(input: ParseStream) -> Result<Self> {
1205        input.step(|cursor| {
1206            if let Some((group, rest)) = cursor.any_group_token() {
1207                if group.delimiter() != Delimiter::None {
1208                    return Ok((group, rest));
1209                }
1210            }
1211            Err(cursor.error("expected group token"))
1212        })
1213    }
1214}
1215
1216#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1217impl Parse for Punct {
1218    fn parse(input: ParseStream) -> Result<Self> {
1219        input.step(|cursor| match cursor.punct() {
1220            Some((punct, rest)) => Ok((punct, rest)),
1221            None => Err(cursor.error("expected punctuation token")),
1222        })
1223    }
1224}
1225
1226#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1227impl Parse for Literal {
1228    fn parse(input: ParseStream) -> Result<Self> {
1229        input.step(|cursor| match cursor.literal() {
1230            Some((literal, rest)) => Ok((literal, rest)),
1231            None => Err(cursor.error("expected literal token")),
1232        })
1233    }
1234}
1235
1236/// Parser that can parse Rust tokens into a particular syntax tree node.
1237///
1238/// Refer to the [module documentation] for details about parsing in Syn.
1239///
1240/// [module documentation]: self
1241pub trait Parser: Sized {
1242    type Output;
1243
1244    /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1245    ///
1246    /// This function enforces that the input is fully parsed. If there are any
1247    /// unparsed tokens at the end of the stream, an error is returned.
1248    fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1249
1250    /// Parse tokens of source code into the chosen syntax tree node.
1251    ///
1252    /// This function enforces that the input is fully parsed. If there are any
1253    /// unparsed tokens at the end of the stream, an error is returned.
1254    #[cfg(feature = "proc-macro")]
1255    #[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
1256    fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1257        self.parse2(proc_macro2::TokenStream::from(tokens))
1258    }
1259
1260    /// Parse a string of Rust code into the chosen syntax tree node.
1261    ///
1262    /// This function enforces that the input is fully parsed. If there are any
1263    /// unparsed tokens at the end of the string, an error is returned.
1264    ///
1265    /// # Hygiene
1266    ///
1267    /// Every span in the resulting syntax tree will be set to resolve at the
1268    /// macro call site.
1269    fn parse_str(self, s: &str) -> Result<Self::Output> {
1270        self.parse2(proc_macro2::TokenStream::from_str(s)?)
1271    }
1272
1273    // Not public API.
1274    #[doc(hidden)]
1275    fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1276        let _ = scope;
1277        self.parse2(tokens)
1278    }
1279}
1280
1281fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1282    let scope = Span::call_site();
1283    let cursor = tokens.begin();
1284    let unexpected = Rc::new(Cell::new(Unexpected::None));
1285    new_parse_buffer(scope, cursor, unexpected)
1286}
1287
1288impl<F, T> Parser for F
1289where
1290    F: FnOnce(ParseStream) -> Result<T>,
1291{
1292    type Output = T;
1293
1294    fn parse2(self, tokens: TokenStream) -> Result<T> {
1295        let buf = TokenBuffer::new2(tokens);
1296        let state = tokens_to_parse_buffer(&buf);
1297        let node = self(&state)?;
1298        state.check_unexpected()?;
1299        if let Some((unexpected_span, delimiter)) =
1300            span_of_unexpected_ignoring_nones(state.cursor())
1301        {
1302            Err(err_unexpected_token(unexpected_span, delimiter))
1303        } else {
1304            Ok(node)
1305        }
1306    }
1307
1308    fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1309        let buf = TokenBuffer::new2(tokens);
1310        let cursor = buf.begin();
1311        let unexpected = Rc::new(Cell::new(Unexpected::None));
1312        let state = new_parse_buffer(scope, cursor, unexpected);
1313        let node = self(&state)?;
1314        state.check_unexpected()?;
1315        if let Some((unexpected_span, delimiter)) =
1316            span_of_unexpected_ignoring_nones(state.cursor())
1317        {
1318            Err(err_unexpected_token(unexpected_span, delimiter))
1319        } else {
1320            Ok(node)
1321        }
1322    }
1323}
1324
1325pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1326    f.__parse_scoped(scope, tokens)
1327}
1328
1329fn err_unexpected_token(span: Span, delimiter: Delimiter) -> Error {
1330    let msg = match delimiter {
1331        Delimiter::Parenthesis => "unexpected token, expected `)`",
1332        Delimiter::Brace => "unexpected token, expected `}`",
1333        Delimiter::Bracket => "unexpected token, expected `]`",
1334        Delimiter::None => "unexpected token",
1335    };
1336    Error::new(span, msg)
1337}
1338
1339/// An empty syntax tree node that consumes no tokens when parsed.
1340///
1341/// This is useful for attribute macros that want to ensure they are not
1342/// provided any attribute args.
1343///
1344/// ```
1345/// # extern crate proc_macro;
1346/// #
1347/// use proc_macro::TokenStream;
1348/// use syn::parse_macro_input;
1349/// use syn::parse::Nothing;
1350///
1351/// # const IGNORE: &str = stringify! {
1352/// #[proc_macro_attribute]
1353/// # };
1354/// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1355///     parse_macro_input!(args as Nothing);
1356///
1357///     /* ... */
1358/// #   TokenStream::new()
1359/// }
1360/// ```
1361///
1362/// ```text
1363/// error: unexpected token
1364///  --> src/main.rs:3:19
1365///   |
1366/// 3 | #[my_attr(asdf)]
1367///   |           ^^^^
1368/// ```
1369pub struct Nothing;
1370
1371impl Parse for Nothing {
1372    fn parse(_input: ParseStream) -> Result<Self> {
1373        Ok(Nothing)
1374    }
1375}
1376
1377#[cfg(feature = "printing")]
1378#[cfg_attr(docsrs, doc(cfg(feature = "printing")))]
1379impl ToTokens for Nothing {
1380    fn to_tokens(&self, tokens: &mut TokenStream) {
1381        let _ = tokens;
1382    }
1383}
1384
1385#[cfg(feature = "clone-impls")]
1386#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
1387impl Clone for Nothing {
1388    fn clone(&self) -> Self {
1389        *self
1390    }
1391}
1392
1393#[cfg(feature = "clone-impls")]
1394#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
1395impl Copy for Nothing {}
1396
1397#[cfg(feature = "extra-traits")]
1398#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1399impl Debug for Nothing {
1400    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1401        f.write_str("Nothing")
1402    }
1403}
1404
1405#[cfg(feature = "extra-traits")]
1406#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1407impl Eq for Nothing {}
1408
1409#[cfg(feature = "extra-traits")]
1410#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1411impl PartialEq for Nothing {
1412    fn eq(&self, _other: &Self) -> bool {
1413        true
1414    }
1415}
1416
1417#[cfg(feature = "extra-traits")]
1418#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1419impl Hash for Nothing {
1420    fn hash<H: Hasher>(&self, _state: &mut H) {}
1421}