Skip to main content

proc_macro2/
lib.rs

1// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3// When fixdep scans this, it will find this string `CONFIG_RUSTC_VERSION_TEXT`
4// and thus add a dependency on `include/config/RUSTC_VERSION_TEXT`, which is
5// touched by Kconfig when the version string from the compiler changes.
6
7//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
8//!
9//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
10//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
11//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
12//!
13//! <br>
14//!
15//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
16//! crate. This library serves two purposes:
17//!
18//! - **Bring proc-macro-like functionality to other contexts like build.rs and
19//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
20//!   macros and cannot ever exist in code outside of a procedural macro.
21//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
22//!   By developing foundational libraries like [syn] and [quote] against
23//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
24//!   becomes easily applicable to many other use cases and we avoid
25//!   reimplementing non-macro equivalents of those libraries.
26//!
27//! - **Make procedural macros unit testable.** As a consequence of being
28//!   specific to procedural macros, nothing that uses `proc_macro` can be
29//!   executed from a unit test. In order for helper libraries or components of
30//!   a macro to be testable in isolation, they must be implemented using
31//!   `proc_macro2`.
32//!
33//! [syn]: https://github.com/dtolnay/syn
34//! [quote]: https://github.com/dtolnay/quote
35//!
36//! # Usage
37//!
38//! The skeleton of a typical procedural macro typically looks like this:
39//!
40//! ```
41//! extern crate proc_macro;
42//!
43//! # const IGNORE: &str = stringify! {
44//! #[proc_macro_derive(MyDerive)]
45//! # };
46//! # #[cfg(wrap_proc_macro)]
47//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
48//!     let input = proc_macro2::TokenStream::from(input);
49//!
50//!     let output: proc_macro2::TokenStream = {
51//!         /* transform input */
52//!         # input
53//!     };
54//!
55//!     proc_macro::TokenStream::from(output)
56//! }
57//! ```
58//!
59//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
60//! propagate parse errors correctly back to the compiler when parsing fails.
61//!
62//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
63//!
64//! # Unstable features
65//!
66//! The default feature set of proc-macro2 tracks the most recent stable
67//! compiler API. Functionality in `proc_macro` that is not yet stable is not
68//! exposed by proc-macro2 by default.
69//!
70//! To opt into the additional APIs available in the most recent nightly
71//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
72//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
73//! these are unstable APIs that track the nightly compiler, minor versions of
74//! proc-macro2 may make breaking changes to them at any time.
75//!
76//! ```sh
77//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
78//! ```
79//!
80//! Note that this must not only be done for your crate, but for any crate that
81//! depends on your crate. This infectious nature is intentional, as it serves
82//! as a reminder that you are outside of the normal semver guarantees.
83//!
84//! Semver exempt methods are marked as such in the proc-macro2 documentation.
85//!
86//! # Thread-Safety
87//!
88//! Most types in this crate are `!Sync` because the underlying compiler
89//! types make use of thread-local memory, meaning they cannot be accessed from
90//! a different thread.
91
92// Proc-macro2 types in rustdoc of other crates get linked to here.
93#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.101")]
94#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
95#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
96#![cfg_attr(docsrs, feature(doc_cfg))]
97#![deny(unsafe_op_in_unsafe_fn)]
98#![allow(
99    clippy::cast_lossless,
100    clippy::cast_possible_truncation,
101    clippy::checked_conversions,
102    clippy::doc_markdown,
103    clippy::elidable_lifetime_names,
104    clippy::incompatible_msrv,
105    clippy::items_after_statements,
106    clippy::iter_without_into_iter,
107    clippy::let_underscore_untyped,
108    clippy::manual_assert,
109    clippy::manual_range_contains,
110    clippy::missing_panics_doc,
111    clippy::missing_safety_doc,
112    clippy::must_use_candidate,
113    clippy::needless_doctest_main,
114    clippy::needless_lifetimes,
115    clippy::new_without_default,
116    clippy::return_self_not_must_use,
117    clippy::shadow_unrelated,
118    clippy::trivially_copy_pass_by_ref,
119    clippy::unnecessary_wraps,
120    clippy::unused_self,
121    clippy::used_underscore_binding,
122    clippy::vec_init_then_push
123)]
124#![allow(unknown_lints, mismatched_lifetime_syntaxes)]
125
126#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
127compile_error! {"\
128    Something is not right. If you've tried to turn on \
129    procmacro2_semver_exempt, you need to ensure that it \
130    is turned on for the compilation of the proc-macro2 \
131    build script as well.
132"}
133
134#[cfg(all(
135    procmacro2_nightly_testing,
136    feature = "proc-macro",
137    not(proc_macro_span)
138))]
139compile_error! {"\
140    Build script probe failed to compile.
141"}
142
143extern crate alloc;
144
145#[cfg(feature = "proc-macro")]
146extern crate proc_macro;
147
148mod marker;
149mod parse;
150mod probe;
151mod rcvec;
152
153#[cfg(wrap_proc_macro)]
154mod detection;
155
156// Public for proc_macro2::fallback::force() and unforce(), but those are quite
157// a niche use case so we omit it from rustdoc.
158#[doc(hidden)]
159pub mod fallback;
160
161pub mod extra;
162
163#[cfg(not(wrap_proc_macro))]
164use crate::fallback as imp;
165#[path = "wrapper.rs"]
166#[cfg(wrap_proc_macro)]
167mod imp;
168
169#[cfg(span_locations)]
170mod location;
171
172use crate::extra::DelimSpan;
173use crate::marker::{ProcMacroAutoTraits, MARKER};
174use core::cmp::Ordering;
175use core::fmt::{self, Debug, Display};
176use core::hash::{Hash, Hasher};
177#[cfg(span_locations)]
178use core::ops::Range;
179use core::ops::RangeBounds;
180use core::str::FromStr;
181use std::error::Error;
182use std::ffi::CStr;
183#[cfg(span_locations)]
184use std::path::PathBuf;
185
186#[cfg(span_locations)]
187#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
188pub use crate::location::LineColumn;
189
190/// An abstract stream of tokens, or more concretely a sequence of token trees.
191///
192/// This type provides interfaces for iterating over token trees and for
193/// collecting token trees into one stream.
194///
195/// Token stream is both the input and output of `#[proc_macro]`,
196/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
197#[derive(Clone)]
198pub struct TokenStream {
199    inner: imp::TokenStream,
200    _marker: ProcMacroAutoTraits,
201}
202
203/// Error returned from `TokenStream::from_str`.
204pub struct LexError {
205    inner: imp::LexError,
206    _marker: ProcMacroAutoTraits,
207}
208
209impl TokenStream {
210    fn _new(inner: imp::TokenStream) -> Self {
211        TokenStream {
212            inner,
213            _marker: MARKER,
214        }
215    }
216
217    fn _new_fallback(inner: fallback::TokenStream) -> Self {
218        TokenStream {
219            inner: imp::TokenStream::from(inner),
220            _marker: MARKER,
221        }
222    }
223
224    /// Returns an empty `TokenStream` containing no token trees.
225    pub fn new() -> Self {
226        TokenStream::_new(imp::TokenStream::new())
227    }
228
229    /// Checks if this `TokenStream` is empty.
230    pub fn is_empty(&self) -> bool {
231        self.inner.is_empty()
232    }
233}
234
235/// `TokenStream::default()` returns an empty stream,
236/// i.e. this is equivalent with `TokenStream::new()`.
237impl Default for TokenStream {
238    fn default() -> Self {
239        TokenStream::new()
240    }
241}
242
243/// Attempts to break the string into tokens and parse those tokens into a token
244/// stream.
245///
246/// May fail for a number of reasons, for example, if the string contains
247/// unbalanced delimiters or characters not existing in the language.
248///
249/// NOTE: Some errors may cause panics instead of returning `LexError`. We
250/// reserve the right to change these errors into `LexError`s later.
251impl FromStr for TokenStream {
252    type Err = LexError;
253
254    fn from_str(src: &str) -> Result<TokenStream, LexError> {
255        match imp::TokenStream::from_str_checked(src) {
256            Ok(tokens) => Ok(TokenStream::_new(tokens)),
257            Err(lex) => Err(LexError {
258                inner: lex,
259                _marker: MARKER,
260            }),
261        }
262    }
263}
264
265#[cfg(feature = "proc-macro")]
266#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
267impl From<proc_macro::TokenStream> for TokenStream {
268    fn from(inner: proc_macro::TokenStream) -> Self {
269        TokenStream::_new(imp::TokenStream::from(inner))
270    }
271}
272
273#[cfg(feature = "proc-macro")]
274#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
275impl From<TokenStream> for proc_macro::TokenStream {
276    fn from(inner: TokenStream) -> Self {
277        proc_macro::TokenStream::from(inner.inner)
278    }
279}
280
281impl From<TokenTree> for TokenStream {
282    fn from(token: TokenTree) -> Self {
283        TokenStream::_new(imp::TokenStream::from(token))
284    }
285}
286
287impl Extend<TokenTree> for TokenStream {
288    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
289        self.inner.extend(streams);
290    }
291}
292
293impl Extend<TokenStream> for TokenStream {
294    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
295        self.inner
296            .extend(streams.into_iter().map(|stream| stream.inner));
297    }
298}
299
300/// Collects a number of token trees into a single stream.
301impl FromIterator<TokenTree> for TokenStream {
302    fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
303        TokenStream::_new(streams.into_iter().collect())
304    }
305}
306impl FromIterator<TokenStream> for TokenStream {
307    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
308        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
309    }
310}
311
312/// Prints the token stream as a string that is supposed to be losslessly
313/// convertible back into the same token stream (modulo spans), except for
314/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
315/// numeric literals.
316impl Display for TokenStream {
317    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
318        Display::fmt(&self.inner, f)
319    }
320}
321
322/// Prints token in a form convenient for debugging.
323impl Debug for TokenStream {
324    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
325        Debug::fmt(&self.inner, f)
326    }
327}
328
329impl LexError {
330    pub fn span(&self) -> Span {
331        Span::_new(self.inner.span())
332    }
333}
334
335impl Debug for LexError {
336    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
337        Debug::fmt(&self.inner, f)
338    }
339}
340
341impl Display for LexError {
342    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
343        Display::fmt(&self.inner, f)
344    }
345}
346
347impl Error for LexError {}
348
349/// A region of source code, along with macro expansion information.
350#[derive(Copy, Clone)]
351pub struct Span {
352    inner: imp::Span,
353    _marker: ProcMacroAutoTraits,
354}
355
356impl Span {
357    fn _new(inner: imp::Span) -> Self {
358        Span {
359            inner,
360            _marker: MARKER,
361        }
362    }
363
364    fn _new_fallback(inner: fallback::Span) -> Self {
365        Span {
366            inner: imp::Span::from(inner),
367            _marker: MARKER,
368        }
369    }
370
371    /// The span of the invocation of the current procedural macro.
372    ///
373    /// Identifiers created with this span will be resolved as if they were
374    /// written directly at the macro call location (call-site hygiene) and
375    /// other code at the macro call site will be able to refer to them as well.
376    pub fn call_site() -> Self {
377        Span::_new(imp::Span::call_site())
378    }
379
380    /// The span located at the invocation of the procedural macro, but with
381    /// local variables, labels, and `$crate` resolved at the definition site
382    /// of the macro. This is the same hygiene behavior as `macro_rules`.
383    pub fn mixed_site() -> Self {
384        Span::_new(imp::Span::mixed_site())
385    }
386
387    /// A span that resolves at the macro definition site.
388    ///
389    /// This method is semver exempt and not exposed by default.
390    #[cfg(procmacro2_semver_exempt)]
391    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
392    pub fn def_site() -> Self {
393        Span::_new(imp::Span::def_site())
394    }
395
396    /// Creates a new span with the same line/column information as `self` but
397    /// that resolves symbols as though it were at `other`.
398    pub fn resolved_at(&self, other: Span) -> Span {
399        Span::_new(self.inner.resolved_at(other.inner))
400    }
401
402    /// Creates a new span with the same name resolution behavior as `self` but
403    /// with the line/column information of `other`.
404    pub fn located_at(&self, other: Span) -> Span {
405        Span::_new(self.inner.located_at(other.inner))
406    }
407
408    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
409    ///
410    /// This method is available when building with a nightly compiler, or when
411    /// building with rustc 1.29+ *without* semver exempt features.
412    ///
413    /// # Panics
414    ///
415    /// Panics if called from outside of a procedural macro. Unlike
416    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
417    /// the context of a procedural macro invocation.
418    #[cfg(wrap_proc_macro)]
419    pub fn unwrap(self) -> proc_macro::Span {
420        self.inner.unwrap()
421    }
422
423    // Soft deprecated. Please use Span::unwrap.
424    #[cfg(wrap_proc_macro)]
425    #[doc(hidden)]
426    pub fn unstable(self) -> proc_macro::Span {
427        self.unwrap()
428    }
429
430    /// Returns the span's byte position range in the source file.
431    ///
432    /// This method requires the `"span-locations"` feature to be enabled.
433    ///
434    /// When executing in a procedural macro context, the returned range is only
435    /// accurate if compiled with a nightly toolchain. The stable toolchain does
436    /// not have this information available. When executing outside of a
437    /// procedural macro, such as main.rs or build.rs, the byte range is always
438    /// accurate regardless of toolchain.
439    #[cfg(span_locations)]
440    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
441    pub fn byte_range(&self) -> Range<usize> {
442        self.inner.byte_range()
443    }
444
445    /// Get the starting line/column in the source file for this span.
446    ///
447    /// This method requires the `"span-locations"` feature to be enabled.
448    ///
449    /// When executing in a procedural macro context, the returned line/column
450    /// are only meaningful if compiled with a nightly toolchain. The stable
451    /// toolchain does not have this information available. When executing
452    /// outside of a procedural macro, such as main.rs or build.rs, the
453    /// line/column are always meaningful regardless of toolchain.
454    #[cfg(span_locations)]
455    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
456    pub fn start(&self) -> LineColumn {
457        self.inner.start()
458    }
459
460    /// Get the ending line/column in the source file for this span.
461    ///
462    /// This method requires the `"span-locations"` feature to be enabled.
463    ///
464    /// When executing in a procedural macro context, the returned line/column
465    /// are only meaningful if compiled with a nightly toolchain. The stable
466    /// toolchain does not have this information available. When executing
467    /// outside of a procedural macro, such as main.rs or build.rs, the
468    /// line/column are always meaningful regardless of toolchain.
469    #[cfg(span_locations)]
470    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
471    pub fn end(&self) -> LineColumn {
472        self.inner.end()
473    }
474
475    /// The path to the source file in which this span occurs, for display
476    /// purposes.
477    ///
478    /// This might not correspond to a valid file system path. It might be
479    /// remapped, or might be an artificial path such as `"<macro expansion>"`.
480    #[cfg(span_locations)]
481    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
482    pub fn file(&self) -> String {
483        self.inner.file()
484    }
485
486    /// The path to the source file in which this span occurs on disk.
487    ///
488    /// This is the actual path on disk. It is unaffected by path remapping.
489    ///
490    /// This path should not be embedded in the output of the macro; prefer
491    /// `file()` instead.
492    #[cfg(span_locations)]
493    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
494    pub fn local_file(&self) -> Option<PathBuf> {
495        self.inner.local_file()
496    }
497
498    /// Create a new span encompassing `self` and `other`.
499    ///
500    /// Returns `None` if `self` and `other` are from different files.
501    ///
502    /// Warning: the underlying [`proc_macro::Span::join`] method is
503    /// nightly-only. When called from within a procedural macro not using a
504    /// nightly compiler, this method will always return `None`.
505    pub fn join(&self, other: Span) -> Option<Span> {
506        self.inner.join(other.inner).map(Span::_new)
507    }
508
509    /// Compares two spans to see if they're equal.
510    ///
511    /// This method is semver exempt and not exposed by default.
512    #[cfg(procmacro2_semver_exempt)]
513    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
514    pub fn eq(&self, other: &Span) -> bool {
515        self.inner.eq(&other.inner)
516    }
517
518    /// Returns the source text behind a span. This preserves the original
519    /// source code, including spaces and comments. It only returns a result if
520    /// the span corresponds to real source code.
521    ///
522    /// Note: The observable result of a macro should only rely on the tokens
523    /// and not on this source text. The result of this function is a best
524    /// effort to be used for diagnostics only.
525    pub fn source_text(&self) -> Option<String> {
526        self.inner.source_text()
527    }
528}
529
530/// Prints a span in a form convenient for debugging.
531impl Debug for Span {
532    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
533        Debug::fmt(&self.inner, f)
534    }
535}
536
537/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
538#[derive(Clone)]
539pub enum TokenTree {
540    /// A token stream surrounded by bracket delimiters.
541    Group(Group),
542    /// An identifier.
543    Ident(Ident),
544    /// A single punctuation character (`+`, `,`, `$`, etc.).
545    Punct(Punct),
546    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
547    Literal(Literal),
548}
549
550impl TokenTree {
551    /// Returns the span of this tree, delegating to the `span` method of
552    /// the contained token or a delimited stream.
553    pub fn span(&self) -> Span {
554        match self {
555            TokenTree::Group(t) => t.span(),
556            TokenTree::Ident(t) => t.span(),
557            TokenTree::Punct(t) => t.span(),
558            TokenTree::Literal(t) => t.span(),
559        }
560    }
561
562    /// Configures the span for *only this token*.
563    ///
564    /// Note that if this token is a `Group` then this method will not configure
565    /// the span of each of the internal tokens, this will simply delegate to
566    /// the `set_span` method of each variant.
567    pub fn set_span(&mut self, span: Span) {
568        match self {
569            TokenTree::Group(t) => t.set_span(span),
570            TokenTree::Ident(t) => t.set_span(span),
571            TokenTree::Punct(t) => t.set_span(span),
572            TokenTree::Literal(t) => t.set_span(span),
573        }
574    }
575}
576
577impl From<Group> for TokenTree {
578    fn from(g: Group) -> Self {
579        TokenTree::Group(g)
580    }
581}
582
583impl From<Ident> for TokenTree {
584    fn from(g: Ident) -> Self {
585        TokenTree::Ident(g)
586    }
587}
588
589impl From<Punct> for TokenTree {
590    fn from(g: Punct) -> Self {
591        TokenTree::Punct(g)
592    }
593}
594
595impl From<Literal> for TokenTree {
596    fn from(g: Literal) -> Self {
597        TokenTree::Literal(g)
598    }
599}
600
601/// Prints the token tree as a string that is supposed to be losslessly
602/// convertible back into the same token tree (modulo spans), except for
603/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
604/// numeric literals.
605impl Display for TokenTree {
606    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
607        match self {
608            TokenTree::Group(t) => Display::fmt(t, f),
609            TokenTree::Ident(t) => Display::fmt(t, f),
610            TokenTree::Punct(t) => Display::fmt(t, f),
611            TokenTree::Literal(t) => Display::fmt(t, f),
612        }
613    }
614}
615
616/// Prints token tree in a form convenient for debugging.
617impl Debug for TokenTree {
618    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
619        // Each of these has the name in the struct type in the derived debug,
620        // so don't bother with an extra layer of indirection
621        match self {
622            TokenTree::Group(t) => Debug::fmt(t, f),
623            TokenTree::Ident(t) => {
624                let mut debug = f.debug_struct("Ident");
625                debug.field("sym", &format_args!("{}", t));
626                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
627                debug.finish()
628            }
629            TokenTree::Punct(t) => Debug::fmt(t, f),
630            TokenTree::Literal(t) => Debug::fmt(t, f),
631        }
632    }
633}
634
635/// A delimited token stream.
636///
637/// A `Group` internally contains a `TokenStream` which is surrounded by
638/// `Delimiter`s.
639#[derive(Clone)]
640pub struct Group {
641    inner: imp::Group,
642}
643
644/// Describes how a sequence of token trees is delimited.
645#[derive(Copy, Clone, Debug, Eq, PartialEq)]
646pub enum Delimiter {
647    /// `( ... )`
648    Parenthesis,
649    /// `{ ... }`
650    Brace,
651    /// `[ ... ]`
652    Bracket,
653    /// `∅ ... ∅`
654    ///
655    /// An invisible delimiter, that may, for example, appear around tokens
656    /// coming from a "macro variable" `$var`. It is important to preserve
657    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
658    /// Invisible delimiters may not survive roundtrip of a token stream through
659    /// a string.
660    ///
661    /// <div class="warning">
662    ///
663    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
664    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
665    /// of a proc_macro macro are preserved, and only in very specific circumstances.
666    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
667    /// operator priorities as indicated above. The other `Delimiter` variants should be used
668    /// instead in this context. This is a rustc bug. For details, see
669    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
670    ///
671    /// </div>
672    None,
673}
674
675impl Group {
676    fn _new(inner: imp::Group) -> Self {
677        Group { inner }
678    }
679
680    fn _new_fallback(inner: fallback::Group) -> Self {
681        Group {
682            inner: imp::Group::from(inner),
683        }
684    }
685
686    /// Creates a new `Group` with the given delimiter and token stream.
687    ///
688    /// This constructor will set the span for this group to
689    /// `Span::call_site()`. To change the span you can use the `set_span`
690    /// method below.
691    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
692        Group {
693            inner: imp::Group::new(delimiter, stream.inner),
694        }
695    }
696
697    /// Returns the punctuation used as the delimiter for this group: a set of
698    /// parentheses, square brackets, or curly braces.
699    pub fn delimiter(&self) -> Delimiter {
700        self.inner.delimiter()
701    }
702
703    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
704    ///
705    /// Note that the returned token stream does not include the delimiter
706    /// returned above.
707    pub fn stream(&self) -> TokenStream {
708        TokenStream::_new(self.inner.stream())
709    }
710
711    /// Returns the span for the delimiters of this token stream, spanning the
712    /// entire `Group`.
713    ///
714    /// ```text
715    /// pub fn span(&self) -> Span {
716    ///            ^^^^^^^
717    /// ```
718    pub fn span(&self) -> Span {
719        Span::_new(self.inner.span())
720    }
721
722    /// Returns the span pointing to the opening delimiter of this group.
723    ///
724    /// ```text
725    /// pub fn span_open(&self) -> Span {
726    ///                 ^
727    /// ```
728    pub fn span_open(&self) -> Span {
729        Span::_new(self.inner.span_open())
730    }
731
732    /// Returns the span pointing to the closing delimiter of this group.
733    ///
734    /// ```text
735    /// pub fn span_close(&self) -> Span {
736    ///                        ^
737    /// ```
738    pub fn span_close(&self) -> Span {
739        Span::_new(self.inner.span_close())
740    }
741
742    /// Returns an object that holds this group's `span_open()` and
743    /// `span_close()` together (in a more compact representation than holding
744    /// those 2 spans individually).
745    pub fn delim_span(&self) -> DelimSpan {
746        DelimSpan::new(&self.inner)
747    }
748
749    /// Configures the span for this `Group`'s delimiters, but not its internal
750    /// tokens.
751    ///
752    /// This method will **not** set the span of all the internal tokens spanned
753    /// by this group, but rather it will only set the span of the delimiter
754    /// tokens at the level of the `Group`.
755    pub fn set_span(&mut self, span: Span) {
756        self.inner.set_span(span.inner);
757    }
758}
759
760/// Prints the group as a string that should be losslessly convertible back
761/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
762/// with `Delimiter::None` delimiters.
763impl Display for Group {
764    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
765        Display::fmt(&self.inner, formatter)
766    }
767}
768
769impl Debug for Group {
770    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
771        Debug::fmt(&self.inner, formatter)
772    }
773}
774
775/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
776///
777/// Multicharacter operators like `+=` are represented as two instances of
778/// `Punct` with different forms of `Spacing` returned.
779#[derive(Clone)]
780pub struct Punct {
781    ch: char,
782    spacing: Spacing,
783    span: Span,
784}
785
786/// Whether a `Punct` is followed immediately by another `Punct` or followed by
787/// another token or whitespace.
788#[derive(Copy, Clone, Debug, Eq, PartialEq)]
789pub enum Spacing {
790    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
791    Alone,
792    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
793    ///
794    /// Additionally, single quote `'` can join with identifiers to form
795    /// lifetimes `'ident`.
796    Joint,
797}
798
799impl Punct {
800    /// Creates a new `Punct` from the given character and spacing.
801    ///
802    /// The `ch` argument must be a valid punctuation character permitted by the
803    /// language, otherwise the function will panic.
804    ///
805    /// The returned `Punct` will have the default span of `Span::call_site()`
806    /// which can be further configured with the `set_span` method below.
807    pub fn new(ch: char, spacing: Spacing) -> Self {
808        if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
809        | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
810        {
811            Punct {
812                ch,
813                spacing,
814                span: Span::call_site(),
815            }
816        } else {
817            panic!("unsupported proc macro punctuation character {:?}", ch);
818        }
819    }
820
821    /// Returns the value of this punctuation character as `char`.
822    pub fn as_char(&self) -> char {
823        self.ch
824    }
825
826    /// Returns the spacing of this punctuation character, indicating whether
827    /// it's immediately followed by another `Punct` in the token stream, so
828    /// they can potentially be combined into a multicharacter operator
829    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
830    /// so the operator has certainly ended.
831    pub fn spacing(&self) -> Spacing {
832        self.spacing
833    }
834
835    /// Returns the span for this punctuation character.
836    pub fn span(&self) -> Span {
837        self.span
838    }
839
840    /// Configure the span for this punctuation character.
841    pub fn set_span(&mut self, span: Span) {
842        self.span = span;
843    }
844}
845
846/// Prints the punctuation character as a string that should be losslessly
847/// convertible back into the same character.
848impl Display for Punct {
849    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
850        Display::fmt(&self.ch, f)
851    }
852}
853
854impl Debug for Punct {
855    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
856        let mut debug = fmt.debug_struct("Punct");
857        debug.field("char", &self.ch);
858        debug.field("spacing", &self.spacing);
859        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
860        debug.finish()
861    }
862}
863
864/// A word of Rust code, which may be a keyword or legal variable name.
865///
866/// An identifier consists of at least one Unicode code point, the first of
867/// which has the XID_Start property and the rest of which have the XID_Continue
868/// property.
869///
870/// - The empty string is not an identifier. Use `Option<Ident>`.
871/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
872///
873/// An identifier constructed with `Ident::new` is permitted to be a Rust
874/// keyword, though parsing one through its [`Parse`] implementation rejects
875/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
876/// behaviour of `Ident::new`.
877///
878/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
879///
880/// # Examples
881///
882/// A new ident can be created from a string using the `Ident::new` function.
883/// A span must be provided explicitly which governs the name resolution
884/// behavior of the resulting identifier.
885///
886/// ```
887/// use proc_macro2::{Ident, Span};
888///
889/// fn main() {
890///     let call_ident = Ident::new("calligraphy", Span::call_site());
891///
892///     println!("{}", call_ident);
893/// }
894/// ```
895///
896/// An ident can be interpolated into a token stream using the `quote!` macro.
897///
898/// ```
899/// use proc_macro2::{Ident, Span};
900/// use quote::quote;
901///
902/// fn main() {
903///     let ident = Ident::new("demo", Span::call_site());
904///
905///     // Create a variable binding whose name is this ident.
906///     let expanded = quote! { let #ident = 10; };
907///
908///     // Create a variable binding with a slightly different name.
909///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
910///     let expanded = quote! { let #temp_ident = 10; };
911/// }
912/// ```
913///
914/// A string representation of the ident is available through the `to_string()`
915/// method.
916///
917/// ```
918/// # use proc_macro2::{Ident, Span};
919/// #
920/// # let ident = Ident::new("another_identifier", Span::call_site());
921/// #
922/// // Examine the ident as a string.
923/// let ident_string = ident.to_string();
924/// if ident_string.len() > 60 {
925///     println!("Very long identifier: {}", ident_string)
926/// }
927/// ```
928#[derive(Clone)]
929pub struct Ident {
930    inner: imp::Ident,
931    _marker: ProcMacroAutoTraits,
932}
933
934impl Ident {
935    fn _new(inner: imp::Ident) -> Self {
936        Ident {
937            inner,
938            _marker: MARKER,
939        }
940    }
941
942    fn _new_fallback(inner: fallback::Ident) -> Self {
943        Ident {
944            inner: imp::Ident::from(inner),
945            _marker: MARKER,
946        }
947    }
948
949    /// Creates a new `Ident` with the given `string` as well as the specified
950    /// `span`.
951    ///
952    /// The `string` argument must be a valid identifier permitted by the
953    /// language, otherwise the function will panic.
954    ///
955    /// Note that `span`, currently in rustc, configures the hygiene information
956    /// for this identifier.
957    ///
958    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
959    /// hygiene meaning that identifiers created with this span will be resolved
960    /// as if they were written directly at the location of the macro call, and
961    /// other code at the macro call site will be able to refer to them as well.
962    ///
963    /// Later spans like `Span::def_site()` will allow to opt-in to
964    /// "definition-site" hygiene meaning that identifiers created with this
965    /// span will be resolved at the location of the macro definition and other
966    /// code at the macro call site will not be able to refer to them.
967    ///
968    /// Due to the current importance of hygiene this constructor, unlike other
969    /// tokens, requires a `Span` to be specified at construction.
970    ///
971    /// # Panics
972    ///
973    /// Panics if the input string is neither a keyword nor a legal variable
974    /// name. If you are not sure whether the string contains an identifier and
975    /// need to handle an error case, use
976    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
977    ///   style="padding-right:0;">syn::parse_str</code></a><code
978    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
979    /// rather than `Ident::new`.
980    #[track_caller]
981    pub fn new(string: &str, span: Span) -> Self {
982        Ident::_new(imp::Ident::new_checked(string, span.inner))
983    }
984
985    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
986    /// `string` argument must be a valid identifier permitted by the language
987    /// (including keywords, e.g. `fn`). Keywords which are usable in path
988    /// segments (e.g. `self`, `super`) are not supported, and will cause a
989    /// panic.
990    #[track_caller]
991    pub fn new_raw(string: &str, span: Span) -> Self {
992        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
993    }
994
995    /// Returns the span of this `Ident`.
996    pub fn span(&self) -> Span {
997        Span::_new(self.inner.span())
998    }
999
1000    /// Configures the span of this `Ident`, possibly changing its hygiene
1001    /// context.
1002    pub fn set_span(&mut self, span: Span) {
1003        self.inner.set_span(span.inner);
1004    }
1005}
1006
1007impl PartialEq for Ident {
1008    fn eq(&self, other: &Ident) -> bool {
1009        self.inner == other.inner
1010    }
1011}
1012
1013impl<T> PartialEq<T> for Ident
1014where
1015    T: ?Sized + AsRef<str>,
1016{
1017    fn eq(&self, other: &T) -> bool {
1018        self.inner == other
1019    }
1020}
1021
1022impl Eq for Ident {}
1023
1024impl PartialOrd for Ident {
1025    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1026        Some(self.cmp(other))
1027    }
1028}
1029
1030impl Ord for Ident {
1031    fn cmp(&self, other: &Ident) -> Ordering {
1032        self.to_string().cmp(&other.to_string())
1033    }
1034}
1035
1036impl Hash for Ident {
1037    fn hash<H: Hasher>(&self, hasher: &mut H) {
1038        self.to_string().hash(hasher);
1039    }
1040}
1041
1042/// Prints the identifier as a string that should be losslessly convertible back
1043/// into the same identifier.
1044impl Display for Ident {
1045    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1046        Display::fmt(&self.inner, f)
1047    }
1048}
1049
1050impl Debug for Ident {
1051    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1052        Debug::fmt(&self.inner, f)
1053    }
1054}
1055
1056/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1057/// byte character (`b'a'`), an integer or floating point number with or without
1058/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1059///
1060/// Boolean literals like `true` and `false` do not belong here, they are
1061/// `Ident`s.
1062#[derive(Clone)]
1063pub struct Literal {
1064    inner: imp::Literal,
1065    _marker: ProcMacroAutoTraits,
1066}
1067
1068macro_rules! suffixed_int_literals {
1069    ($($name:ident => $kind:ident,)*) => ($(
1070        /// Creates a new suffixed integer literal with the specified value.
1071        ///
1072        /// This function will create an integer like `1u32` where the integer
1073        /// value specified is the first part of the token and the integral is
1074        /// also suffixed at the end. Literals created from negative numbers may
1075        /// not survive roundtrips through `TokenStream` or strings and may be
1076        /// broken into two tokens (`-` and positive literal).
1077        ///
1078        /// Literals created through this method have the `Span::call_site()`
1079        /// span by default, which can be configured with the `set_span` method
1080        /// below.
1081        pub fn $name(n: $kind) -> Literal {
1082            Literal::_new(imp::Literal::$name(n))
1083        }
1084    )*)
1085}
1086
1087macro_rules! unsuffixed_int_literals {
1088    ($($name:ident => $kind:ident,)*) => ($(
1089        /// Creates a new unsuffixed integer literal with the specified value.
1090        ///
1091        /// This function will create an integer like `1` where the integer
1092        /// value specified is the first part of the token. No suffix is
1093        /// specified on this token, meaning that invocations like
1094        /// `Literal::i8_unsuffixed(1)` are equivalent to
1095        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1096        /// may not survive roundtrips through `TokenStream` or strings and may
1097        /// be broken into two tokens (`-` and positive literal).
1098        ///
1099        /// Literals created through this method have the `Span::call_site()`
1100        /// span by default, which can be configured with the `set_span` method
1101        /// below.
1102        pub fn $name(n: $kind) -> Literal {
1103            Literal::_new(imp::Literal::$name(n))
1104        }
1105    )*)
1106}
1107
1108impl Literal {
1109    fn _new(inner: imp::Literal) -> Self {
1110        Literal {
1111            inner,
1112            _marker: MARKER,
1113        }
1114    }
1115
1116    fn _new_fallback(inner: fallback::Literal) -> Self {
1117        Literal {
1118            inner: imp::Literal::from(inner),
1119            _marker: MARKER,
1120        }
1121    }
1122
1123    suffixed_int_literals! {
1124        u8_suffixed => u8,
1125        u16_suffixed => u16,
1126        u32_suffixed => u32,
1127        u64_suffixed => u64,
1128        u128_suffixed => u128,
1129        usize_suffixed => usize,
1130        i8_suffixed => i8,
1131        i16_suffixed => i16,
1132        i32_suffixed => i32,
1133        i64_suffixed => i64,
1134        i128_suffixed => i128,
1135        isize_suffixed => isize,
1136    }
1137
1138    unsuffixed_int_literals! {
1139        u8_unsuffixed => u8,
1140        u16_unsuffixed => u16,
1141        u32_unsuffixed => u32,
1142        u64_unsuffixed => u64,
1143        u128_unsuffixed => u128,
1144        usize_unsuffixed => usize,
1145        i8_unsuffixed => i8,
1146        i16_unsuffixed => i16,
1147        i32_unsuffixed => i32,
1148        i64_unsuffixed => i64,
1149        i128_unsuffixed => i128,
1150        isize_unsuffixed => isize,
1151    }
1152
1153    /// Creates a new unsuffixed floating-point literal.
1154    ///
1155    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1156    /// the float's value is emitted directly into the token but no suffix is
1157    /// used, so it may be inferred to be a `f64` later in the compiler.
1158    /// Literals created from negative numbers may not survive round-trips
1159    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1160    /// and positive literal).
1161    ///
1162    /// # Panics
1163    ///
1164    /// This function requires that the specified float is finite, for example
1165    /// if it is infinity or NaN this function will panic.
1166    pub fn f64_unsuffixed(f: f64) -> Literal {
1167        assert!(f.is_finite());
1168        Literal::_new(imp::Literal::f64_unsuffixed(f))
1169    }
1170
1171    /// Creates a new suffixed floating-point literal.
1172    ///
1173    /// This constructor will create a literal like `1.0f64` where the value
1174    /// specified is the preceding part of the token and `f64` is the suffix of
1175    /// the token. This token will always be inferred to be an `f64` in the
1176    /// compiler. Literals created from negative numbers may not survive
1177    /// round-trips through `TokenStream` or strings and may be broken into two
1178    /// tokens (`-` and positive literal).
1179    ///
1180    /// # Panics
1181    ///
1182    /// This function requires that the specified float is finite, for example
1183    /// if it is infinity or NaN this function will panic.
1184    pub fn f64_suffixed(f: f64) -> Literal {
1185        assert!(f.is_finite());
1186        Literal::_new(imp::Literal::f64_suffixed(f))
1187    }
1188
1189    /// Creates a new unsuffixed floating-point literal.
1190    ///
1191    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1192    /// the float's value is emitted directly into the token but no suffix is
1193    /// used, so it may be inferred to be a `f64` later in the compiler.
1194    /// Literals created from negative numbers may not survive round-trips
1195    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1196    /// and positive literal).
1197    ///
1198    /// # Panics
1199    ///
1200    /// This function requires that the specified float is finite, for example
1201    /// if it is infinity or NaN this function will panic.
1202    pub fn f32_unsuffixed(f: f32) -> Literal {
1203        assert!(f.is_finite());
1204        Literal::_new(imp::Literal::f32_unsuffixed(f))
1205    }
1206
1207    /// Creates a new suffixed floating-point literal.
1208    ///
1209    /// This constructor will create a literal like `1.0f32` where the value
1210    /// specified is the preceding part of the token and `f32` is the suffix of
1211    /// the token. This token will always be inferred to be an `f32` in the
1212    /// compiler. Literals created from negative numbers may not survive
1213    /// round-trips through `TokenStream` or strings and may be broken into two
1214    /// tokens (`-` and positive literal).
1215    ///
1216    /// # Panics
1217    ///
1218    /// This function requires that the specified float is finite, for example
1219    /// if it is infinity or NaN this function will panic.
1220    pub fn f32_suffixed(f: f32) -> Literal {
1221        assert!(f.is_finite());
1222        Literal::_new(imp::Literal::f32_suffixed(f))
1223    }
1224
1225    /// String literal.
1226    pub fn string(string: &str) -> Literal {
1227        Literal::_new(imp::Literal::string(string))
1228    }
1229
1230    /// Character literal.
1231    pub fn character(ch: char) -> Literal {
1232        Literal::_new(imp::Literal::character(ch))
1233    }
1234
1235    /// Byte character literal.
1236    pub fn byte_character(byte: u8) -> Literal {
1237        Literal::_new(imp::Literal::byte_character(byte))
1238    }
1239
1240    /// Byte string literal.
1241    pub fn byte_string(bytes: &[u8]) -> Literal {
1242        Literal::_new(imp::Literal::byte_string(bytes))
1243    }
1244
1245    /// C string literal.
1246    pub fn c_string(string: &CStr) -> Literal {
1247        Literal::_new(imp::Literal::c_string(string))
1248    }
1249
1250    /// Returns the span encompassing this literal.
1251    pub fn span(&self) -> Span {
1252        Span::_new(self.inner.span())
1253    }
1254
1255    /// Configures the span associated for this literal.
1256    pub fn set_span(&mut self, span: Span) {
1257        self.inner.set_span(span.inner);
1258    }
1259
1260    /// Returns a `Span` that is a subset of `self.span()` containing only
1261    /// the source bytes in range `range`. Returns `None` if the would-be
1262    /// trimmed span is outside the bounds of `self`.
1263    ///
1264    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1265    /// nightly-only. When called from within a procedural macro not using a
1266    /// nightly compiler, this method will always return `None`.
1267    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1268        self.inner.subspan(range).map(Span::_new)
1269    }
1270
1271    // Intended for the `quote!` macro to use when constructing a proc-macro2
1272    // token out of a macro_rules $:literal token, which is already known to be
1273    // a valid literal. This avoids reparsing/validating the literal's string
1274    // representation. This is not public API other than for quote.
1275    #[doc(hidden)]
1276    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1277        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1278    }
1279}
1280
1281impl FromStr for Literal {
1282    type Err = LexError;
1283
1284    fn from_str(repr: &str) -> Result<Self, LexError> {
1285        match imp::Literal::from_str_checked(repr) {
1286            Ok(lit) => Ok(Literal::_new(lit)),
1287            Err(lex) => Err(LexError {
1288                inner: lex,
1289                _marker: MARKER,
1290            }),
1291        }
1292    }
1293}
1294
1295impl Debug for Literal {
1296    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1297        Debug::fmt(&self.inner, f)
1298    }
1299}
1300
1301impl Display for Literal {
1302    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1303        Display::fmt(&self.inner, f)
1304    }
1305}
1306
1307/// Public implementation details for the `TokenStream` type, such as iterators.
1308pub mod token_stream {
1309    use crate::marker::{ProcMacroAutoTraits, MARKER};
1310    use crate::{imp, TokenTree};
1311    use core::fmt::{self, Debug};
1312
1313    pub use crate::TokenStream;
1314
1315    /// An iterator over `TokenStream`'s `TokenTree`s.
1316    ///
1317    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1318    /// delimited groups, and returns whole groups as token trees.
1319    #[derive(Clone)]
1320    pub struct IntoIter {
1321        inner: imp::TokenTreeIter,
1322        _marker: ProcMacroAutoTraits,
1323    }
1324
1325    impl Iterator for IntoIter {
1326        type Item = TokenTree;
1327
1328        fn next(&mut self) -> Option<TokenTree> {
1329            self.inner.next()
1330        }
1331
1332        fn size_hint(&self) -> (usize, Option<usize>) {
1333            self.inner.size_hint()
1334        }
1335    }
1336
1337    impl Debug for IntoIter {
1338        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1339            f.write_str("TokenStream ")?;
1340            f.debug_list().entries(self.clone()).finish()
1341        }
1342    }
1343
1344    impl IntoIterator for TokenStream {
1345        type Item = TokenTree;
1346        type IntoIter = IntoIter;
1347
1348        fn into_iter(self) -> IntoIter {
1349            IntoIter {
1350                inner: self.inner.into_iter(),
1351                _marker: MARKER,
1352            }
1353        }
1354    }
1355}