core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, a
31//! `&T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. This type provides the following
33//! methods:
34//!
35//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
36//! interior value by duplicating it.
37//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
38//! interior value with [`Default::default()`] and returns the replaced value.
39//! - All types have:
40//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
41//! value.
42//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
43//! interior value.
44//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
45//!
46//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
47//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
48//! possible. For larger and non-copy types, `RefCell` provides some advantages.
49//!
50//! ## `RefCell<T>`
51//!
52//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
53//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
54//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
55//! statically, at compile time.
56//!
57//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
58//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
59//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
60//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
61//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
62//! these rules, the thread will panic.
63//!
64//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
65//!
66//! ## `OnceCell<T>`
67//!
68//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
69//! typically only need to be set once. This means that a reference `&T` can be obtained without
70//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
71//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
72//! reference to the `OnceCell`.
73//!
74//! `OnceCell` provides the following methods:
75//!
76//! - [`get`](OnceCell::get): obtain a reference to the inner value
77//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
78//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
79//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
80//! if you have a mutable reference to the cell itself.
81//!
82//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
83//!
84//! ## `LazyCell<T, F>`
85//!
86//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
87//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
88//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
89//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
90//! so its use is much more transparent with a place which has been initialized by a constant.
91//!
92//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
93//!
94//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
95//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
96//!
97//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
98//!
99//! # When to choose interior mutability
100//!
101//! The more common inherited mutability, where one must have unique access to mutate a value, is
102//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
103//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
104//! interior mutability is something of a last resort. Since cell types enable mutation where it
105//! would otherwise be disallowed though, there are occasions when interior mutability might be
106//! appropriate, or even *must* be used, e.g.
107//!
108//! * Introducing mutability 'inside' of something immutable
109//! * Implementation details of logically-immutable methods.
110//! * Mutating implementations of [`Clone`].
111//!
112//! ## Introducing mutability 'inside' of something immutable
113//!
114//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
115//! be cloned and shared between multiple parties. Because the contained values may be
116//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
117//! impossible to mutate data inside of these smart pointers at all.
118//!
119//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
120//! mutability:
121//!
122//! ```
123//! use std::cell::{RefCell, RefMut};
124//! use std::collections::HashMap;
125//! use std::rc::Rc;
126//!
127//! fn main() {
128//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
129//! // Create a new block to limit the scope of the dynamic borrow
130//! {
131//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
132//! map.insert("africa", 92388);
133//! map.insert("kyoto", 11837);
134//! map.insert("piccadilly", 11826);
135//! map.insert("marbles", 38);
136//! }
137//!
138//! // Note that if we had not let the previous borrow of the cache fall out
139//! // of scope then the subsequent borrow would cause a dynamic thread panic.
140//! // This is the major hazard of using `RefCell`.
141//! let total: i32 = shared_map.borrow().values().sum();
142//! println!("{total}");
143//! }
144//! ```
145//!
146//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
147//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
148//! multi-threaded situation.
149//!
150//! ## Implementation details of logically-immutable methods
151//!
152//! Occasionally it may be desirable not to expose in an API that there is mutation happening
153//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
154//! forces the implementation to perform mutation; or because you must employ mutation to implement
155//! a trait method that was originally defined to take `&self`.
156//!
157//! ```
158//! # #![allow(dead_code)]
159//! use std::cell::OnceCell;
160//!
161//! struct Graph {
162//! edges: Vec<(i32, i32)>,
163//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
164//! }
165//!
166//! impl Graph {
167//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
168//! self.span_tree_cache
169//! .get_or_init(|| self.calc_span_tree())
170//! .clone()
171//! }
172//!
173//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
174//! // Expensive computation goes here
175//! vec![]
176//! }
177//! }
178//! ```
179//!
180//! ## Mutating implementations of `Clone`
181//!
182//! This is simply a special - but common - case of the previous: hiding mutability for operations
183//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
184//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
185//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
186//! reference counts within a `Cell<T>`.
187//!
188//! ```
189//! use std::cell::Cell;
190//! use std::ptr::NonNull;
191//! use std::process::abort;
192//! use std::marker::PhantomData;
193//!
194//! struct Rc<T: ?Sized> {
195//! ptr: NonNull<RcInner<T>>,
196//! phantom: PhantomData<RcInner<T>>,
197//! }
198//!
199//! struct RcInner<T: ?Sized> {
200//! strong: Cell<usize>,
201//! refcount: Cell<usize>,
202//! value: T,
203//! }
204//!
205//! impl<T: ?Sized> Clone for Rc<T> {
206//! fn clone(&self) -> Rc<T> {
207//! self.inc_strong();
208//! Rc {
209//! ptr: self.ptr,
210//! phantom: PhantomData,
211//! }
212//! }
213//! }
214//!
215//! trait RcInnerPtr<T: ?Sized> {
216//!
217//! fn inner(&self) -> &RcInner<T>;
218//!
219//! fn strong(&self) -> usize {
220//! self.inner().strong.get()
221//! }
222//!
223//! fn inc_strong(&self) {
224//! self.inner()
225//! .strong
226//! .set(self.strong()
227//! .checked_add(1)
228//! .unwrap_or_else(|| abort() ));
229//! }
230//! }
231//!
232//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
233//! fn inner(&self) -> &RcInner<T> {
234//! unsafe {
235//! self.ptr.as_ref()
236//! }
237//! }
238//! }
239//! ```
240//!
241//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
242//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
243//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
244//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
245//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
246//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
247//! [`Sync`]: ../../std/marker/trait.Sync.html
248//! [`atomic`]: crate::sync::atomic
249
250#![stable(feature = "rust1", since = "1.0.0")]
251
252use crate::cmp::Ordering;
253use crate::fmt::{self, Debug, Display};
254use crate::marker::{Destruct, PhantomData, Unsize};
255use crate::mem::{self, ManuallyDrop};
256use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
257use crate::panic::const_panic;
258use crate::pin::PinCoerceUnsized;
259use crate::ptr::{self, NonNull};
260use crate::range;
261
262mod lazy;
263mod once;
264
265#[stable(feature = "lazy_cell", since = "1.80.0")]
266pub use lazy::LazyCell;
267#[stable(feature = "once_cell", since = "1.70.0")]
268pub use once::OnceCell;
269
270/// A mutable memory location.
271///
272/// # Memory layout
273///
274/// `Cell<T>` has the same [memory layout and caveats as
275/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
276/// `Cell<T>` has the same in-memory representation as its inner type `T`.
277///
278/// # Examples
279///
280/// In this example, you can see that `Cell<T>` enables mutation inside an
281/// immutable struct. In other words, it enables "interior mutability".
282///
283/// ```
284/// use std::cell::Cell;
285///
286/// struct SomeStruct {
287/// regular_field: u8,
288/// special_field: Cell<u8>,
289/// }
290///
291/// let my_struct = SomeStruct {
292/// regular_field: 0,
293/// special_field: Cell::new(1),
294/// };
295///
296/// let new_value = 100;
297///
298/// // ERROR: `my_struct` is immutable
299/// // my_struct.regular_field = new_value;
300///
301/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
302/// // which can always be mutated
303/// my_struct.special_field.set(new_value);
304/// assert_eq!(my_struct.special_field.get(), new_value);
305/// ```
306///
307/// See the [module-level documentation](self) for more.
308#[rustc_diagnostic_item = "Cell"]
309#[stable(feature = "rust1", since = "1.0.0")]
310#[repr(transparent)]
311#[rustc_pub_transparent]
312pub struct Cell<T: ?Sized> {
313 value: UnsafeCell<T>,
314}
315
316#[stable(feature = "rust1", since = "1.0.0")]
317unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
318
319// Note that this negative impl isn't strictly necessary for correctness,
320// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
321// However, given how important `Cell`'s `!Sync`-ness is,
322// having an explicit negative impl is nice for documentation purposes
323// and results in nicer error messages.
324#[stable(feature = "rust1", since = "1.0.0")]
325impl<T: ?Sized> !Sync for Cell<T> {}
326
327#[stable(feature = "rust1", since = "1.0.0")]
328impl<T: Copy> Clone for Cell<T> {
329 #[inline]
330 fn clone(&self) -> Cell<T> {
331 Cell::new(self.get())
332 }
333}
334
335#[stable(feature = "rust1", since = "1.0.0")]
336#[rustc_const_unstable(feature = "const_default", issue = "143894")]
337impl<T: [const] Default> const Default for Cell<T> {
338 /// Creates a `Cell<T>`, with the `Default` value for T.
339 #[inline]
340 fn default() -> Cell<T> {
341 Cell::new(Default::default())
342 }
343}
344
345#[stable(feature = "rust1", since = "1.0.0")]
346impl<T: PartialEq + Copy> PartialEq for Cell<T> {
347 #[inline]
348 fn eq(&self, other: &Cell<T>) -> bool {
349 self.get() == other.get()
350 }
351}
352
353#[stable(feature = "cell_eq", since = "1.2.0")]
354impl<T: Eq + Copy> Eq for Cell<T> {}
355
356#[stable(feature = "cell_ord", since = "1.10.0")]
357impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
358 #[inline]
359 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
360 self.get().partial_cmp(&other.get())
361 }
362
363 #[inline]
364 fn lt(&self, other: &Cell<T>) -> bool {
365 self.get() < other.get()
366 }
367
368 #[inline]
369 fn le(&self, other: &Cell<T>) -> bool {
370 self.get() <= other.get()
371 }
372
373 #[inline]
374 fn gt(&self, other: &Cell<T>) -> bool {
375 self.get() > other.get()
376 }
377
378 #[inline]
379 fn ge(&self, other: &Cell<T>) -> bool {
380 self.get() >= other.get()
381 }
382}
383
384#[stable(feature = "cell_ord", since = "1.10.0")]
385impl<T: Ord + Copy> Ord for Cell<T> {
386 #[inline]
387 fn cmp(&self, other: &Cell<T>) -> Ordering {
388 self.get().cmp(&other.get())
389 }
390}
391
392#[stable(feature = "cell_from", since = "1.12.0")]
393#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
394impl<T> const From<T> for Cell<T> {
395 /// Creates a new `Cell<T>` containing the given value.
396 fn from(t: T) -> Cell<T> {
397 Cell::new(t)
398 }
399}
400
401impl<T> Cell<T> {
402 /// Creates a new `Cell` containing the given value.
403 ///
404 /// # Examples
405 ///
406 /// ```
407 /// use std::cell::Cell;
408 ///
409 /// let c = Cell::new(5);
410 /// ```
411 #[stable(feature = "rust1", since = "1.0.0")]
412 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
413 #[inline]
414 pub const fn new(value: T) -> Cell<T> {
415 Cell { value: UnsafeCell::new(value) }
416 }
417
418 /// Sets the contained value.
419 ///
420 /// # Examples
421 ///
422 /// ```
423 /// use std::cell::Cell;
424 ///
425 /// let c = Cell::new(5);
426 ///
427 /// c.set(10);
428 /// ```
429 #[inline]
430 #[stable(feature = "rust1", since = "1.0.0")]
431 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
432 #[rustc_should_not_be_called_on_const_items]
433 pub const fn set(&self, val: T)
434 where
435 T: [const] Destruct,
436 {
437 self.replace(val);
438 }
439
440 /// Swaps the values of two `Cell`s.
441 ///
442 /// The difference with `std::mem::swap` is that this function doesn't
443 /// require a `&mut` reference.
444 ///
445 /// # Panics
446 ///
447 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
448 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
449 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
450 ///
451 /// # Examples
452 ///
453 /// ```
454 /// use std::cell::Cell;
455 ///
456 /// let c1 = Cell::new(5i32);
457 /// let c2 = Cell::new(10i32);
458 /// c1.swap(&c2);
459 /// assert_eq!(10, c1.get());
460 /// assert_eq!(5, c2.get());
461 /// ```
462 #[inline]
463 #[stable(feature = "move_cell", since = "1.17.0")]
464 #[rustc_should_not_be_called_on_const_items]
465 pub fn swap(&self, other: &Self) {
466 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
467 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
468 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
469 let src_usize = src.addr();
470 let dst_usize = dst.addr();
471 let diff = src_usize.abs_diff(dst_usize);
472 diff >= size_of::<T>()
473 }
474
475 if ptr::eq(self, other) {
476 // Swapping wouldn't change anything.
477 return;
478 }
479 if !is_nonoverlapping(self, other) {
480 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
481 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
482 }
483 // SAFETY: This can be risky if called from separate threads, but `Cell`
484 // is `!Sync` so this won't happen. This also won't invalidate any
485 // pointers since `Cell` makes sure nothing else will be pointing into
486 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
487 // so `swap` will just properly copy two full values of type `T` back and forth.
488 unsafe {
489 mem::swap(&mut *self.value.get(), &mut *other.value.get());
490 }
491 }
492
493 /// Replaces the contained value with `val`, and returns the old contained value.
494 ///
495 /// # Examples
496 ///
497 /// ```
498 /// use std::cell::Cell;
499 ///
500 /// let cell = Cell::new(5);
501 /// assert_eq!(cell.get(), 5);
502 /// assert_eq!(cell.replace(10), 5);
503 /// assert_eq!(cell.get(), 10);
504 /// ```
505 #[inline]
506 #[stable(feature = "move_cell", since = "1.17.0")]
507 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
508 #[rustc_confusables("swap")]
509 #[rustc_should_not_be_called_on_const_items]
510 pub const fn replace(&self, val: T) -> T {
511 // SAFETY: This can cause data races if called from a separate thread,
512 // but `Cell` is `!Sync` so this won't happen.
513 mem::replace(unsafe { &mut *self.value.get() }, val)
514 }
515
516 /// Unwraps the value, consuming the cell.
517 ///
518 /// # Examples
519 ///
520 /// ```
521 /// use std::cell::Cell;
522 ///
523 /// let c = Cell::new(5);
524 /// let five = c.into_inner();
525 ///
526 /// assert_eq!(five, 5);
527 /// ```
528 #[stable(feature = "move_cell", since = "1.17.0")]
529 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
530 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
531 pub const fn into_inner(self) -> T {
532 self.value.into_inner()
533 }
534}
535
536impl<T: Copy> Cell<T> {
537 /// Returns a copy of the contained value.
538 ///
539 /// # Examples
540 ///
541 /// ```
542 /// use std::cell::Cell;
543 ///
544 /// let c = Cell::new(5);
545 ///
546 /// let five = c.get();
547 /// ```
548 #[inline]
549 #[stable(feature = "rust1", since = "1.0.0")]
550 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
551 #[rustc_should_not_be_called_on_const_items]
552 pub const fn get(&self) -> T {
553 // SAFETY: This can cause data races if called from a separate thread,
554 // but `Cell` is `!Sync` so this won't happen.
555 unsafe { *self.value.get() }
556 }
557
558 /// Updates the contained value using a function.
559 ///
560 /// # Examples
561 ///
562 /// ```
563 /// use std::cell::Cell;
564 ///
565 /// let c = Cell::new(5);
566 /// c.update(|x| x + 1);
567 /// assert_eq!(c.get(), 6);
568 /// ```
569 #[inline]
570 #[stable(feature = "cell_update", since = "1.88.0")]
571 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
572 #[rustc_should_not_be_called_on_const_items]
573 pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
574 where
575 // FIXME(const-hack): `Copy` should imply `const Destruct`
576 T: [const] Destruct,
577 {
578 let old = self.get();
579 self.set(f(old));
580 }
581}
582
583impl<T: ?Sized> Cell<T> {
584 /// Returns a raw pointer to the underlying data in this cell.
585 ///
586 /// # Examples
587 ///
588 /// ```
589 /// use std::cell::Cell;
590 ///
591 /// let c = Cell::new(5);
592 ///
593 /// let ptr = c.as_ptr();
594 /// ```
595 #[inline]
596 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
597 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
598 #[rustc_as_ptr]
599 #[rustc_never_returns_null_ptr]
600 pub const fn as_ptr(&self) -> *mut T {
601 self.value.get()
602 }
603
604 /// Returns a mutable reference to the underlying data.
605 ///
606 /// This call borrows `Cell` mutably (at compile-time) which guarantees
607 /// that we possess the only reference.
608 ///
609 /// However be cautious: this method expects `self` to be mutable, which is
610 /// generally not the case when using a `Cell`. If you require interior
611 /// mutability by reference, consider using `RefCell` which provides
612 /// run-time checked mutable borrows through its [`borrow_mut`] method.
613 ///
614 /// [`borrow_mut`]: RefCell::borrow_mut()
615 ///
616 /// # Examples
617 ///
618 /// ```
619 /// use std::cell::Cell;
620 ///
621 /// let mut c = Cell::new(5);
622 /// *c.get_mut() += 1;
623 ///
624 /// assert_eq!(c.get(), 6);
625 /// ```
626 #[inline]
627 #[stable(feature = "cell_get_mut", since = "1.11.0")]
628 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
629 pub const fn get_mut(&mut self) -> &mut T {
630 self.value.get_mut()
631 }
632
633 /// Returns a `&Cell<T>` from a `&mut T`
634 ///
635 /// # Examples
636 ///
637 /// ```
638 /// use std::cell::Cell;
639 ///
640 /// let slice: &mut [i32] = &mut [1, 2, 3];
641 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
642 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
643 ///
644 /// assert_eq!(slice_cell.len(), 3);
645 /// ```
646 #[inline]
647 #[stable(feature = "as_cell", since = "1.37.0")]
648 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
649 pub const fn from_mut(t: &mut T) -> &Cell<T> {
650 // SAFETY: `&mut` ensures unique access.
651 unsafe { &*(t as *mut T as *const Cell<T>) }
652 }
653}
654
655impl<T: Default> Cell<T> {
656 /// Takes the value of the cell, leaving `Default::default()` in its place.
657 ///
658 /// # Examples
659 ///
660 /// ```
661 /// use std::cell::Cell;
662 ///
663 /// let c = Cell::new(5);
664 /// let five = c.take();
665 ///
666 /// assert_eq!(five, 5);
667 /// assert_eq!(c.into_inner(), 0);
668 /// ```
669 #[stable(feature = "move_cell", since = "1.17.0")]
670 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
671 pub const fn take(&self) -> T
672 where
673 T: [const] Default,
674 {
675 self.replace(Default::default())
676 }
677}
678
679#[unstable(feature = "coerce_unsized", issue = "18598")]
680impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
681
682// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
683// and become dyn-compatible method receivers.
684// Note that currently `Cell` itself cannot be a method receiver
685// because it does not implement Deref.
686// In other words:
687// `self: Cell<&Self>` won't work
688// `self: CellWrapper<Self>` becomes possible
689#[unstable(feature = "dispatch_from_dyn", issue = "none")]
690impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
691
692#[stable(feature = "more_conversion_trait_impls", since = "CURRENT_RUSTC_VERSION")]
693impl<T, const N: usize> AsRef<[Cell<T>; N]> for Cell<[T; N]> {
694 #[inline]
695 fn as_ref(&self) -> &[Cell<T>; N] {
696 self.as_array_of_cells()
697 }
698}
699
700#[stable(feature = "more_conversion_trait_impls", since = "CURRENT_RUSTC_VERSION")]
701impl<T, const N: usize> AsRef<[Cell<T>]> for Cell<[T; N]> {
702 #[inline]
703 fn as_ref(&self) -> &[Cell<T>] {
704 &*self.as_array_of_cells()
705 }
706}
707
708#[stable(feature = "more_conversion_trait_impls", since = "CURRENT_RUSTC_VERSION")]
709impl<T> AsRef<[Cell<T>]> for Cell<[T]> {
710 #[inline]
711 fn as_ref(&self) -> &[Cell<T>] {
712 self.as_slice_of_cells()
713 }
714}
715
716impl<T> Cell<[T]> {
717 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
718 ///
719 /// # Examples
720 ///
721 /// ```
722 /// use std::cell::Cell;
723 ///
724 /// let slice: &mut [i32] = &mut [1, 2, 3];
725 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
726 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
727 ///
728 /// assert_eq!(slice_cell.len(), 3);
729 /// ```
730 #[stable(feature = "as_cell", since = "1.37.0")]
731 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
732 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
733 // SAFETY: `Cell<T>` has the same memory layout as `T`.
734 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
735 }
736}
737
738impl<T, const N: usize> Cell<[T; N]> {
739 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
740 ///
741 /// # Examples
742 ///
743 /// ```
744 /// use std::cell::Cell;
745 ///
746 /// let mut array: [i32; 3] = [1, 2, 3];
747 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
748 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
749 /// ```
750 #[stable(feature = "as_array_of_cells", since = "1.91.0")]
751 #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
752 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
753 // SAFETY: `Cell<T>` has the same memory layout as `T`.
754 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
755 }
756}
757
758/// Types for which cloning `Cell<Self>` is sound.
759///
760/// # Safety
761///
762/// Implementing this trait for a type is sound if and only if the following code is sound for T =
763/// that type.
764///
765/// ```
766/// #![feature(cell_get_cloned)]
767/// # use std::cell::{CloneFromCell, Cell};
768/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
769/// unsafe { T::clone(&*cell.as_ptr()) }
770/// }
771/// ```
772///
773/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
774/// following is unsound:
775///
776/// ```rust
777/// #![feature(cell_get_cloned)]
778/// # use std::cell::Cell;
779///
780/// #[derive(Copy, Debug)]
781/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
782///
783/// impl Clone for Bad<'_> {
784/// fn clone(&self) -> Self {
785/// let a: &u8 = &self.1;
786/// // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
787/// // it -- this is UB
788/// self.0.unwrap().set(Self(None, 1));
789/// dbg!((a, self));
790/// Self(None, 0)
791/// }
792/// }
793///
794/// // this is not sound
795/// // unsafe impl CloneFromCell for Bad<'_> {}
796/// ```
797#[unstable(feature = "cell_get_cloned", issue = "145329")]
798// Allow potential overlapping implementations in user code
799#[marker]
800pub unsafe trait CloneFromCell: Clone {}
801
802// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
803// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
804#[unstable(feature = "cell_get_cloned", issue = "145329")]
805unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
806#[unstable(feature = "cell_get_cloned", issue = "145329")]
807unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
808#[unstable(feature = "cell_get_cloned", issue = "145329")]
809unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
810#[unstable(feature = "cell_get_cloned", issue = "145329")]
811unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
812#[unstable(feature = "cell_get_cloned", issue = "145329")]
813unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
814#[unstable(feature = "cell_get_cloned", issue = "145329")]
815unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
816#[unstable(feature = "cell_get_cloned", issue = "145329")]
817unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
818
819#[unstable(feature = "cell_get_cloned", issue = "145329")]
820impl<T: CloneFromCell> Cell<T> {
821 /// Get a clone of the `Cell` that contains a copy of the original value.
822 ///
823 /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
824 /// cheaper `clone()` method.
825 ///
826 /// # Examples
827 ///
828 /// ```
829 /// #![feature(cell_get_cloned)]
830 ///
831 /// use core::cell::Cell;
832 /// use std::rc::Rc;
833 ///
834 /// let rc = Rc::new(1usize);
835 /// let c1 = Cell::new(rc);
836 /// let c2 = c1.get_cloned();
837 /// assert_eq!(*c2.into_inner(), 1);
838 /// ```
839 pub fn get_cloned(&self) -> Self {
840 // SAFETY: T is CloneFromCell, which guarantees that this is sound.
841 Cell::new(T::clone(unsafe { &*self.as_ptr() }))
842 }
843}
844
845/// A mutable memory location with dynamically checked borrow rules
846///
847/// See the [module-level documentation](self) for more.
848#[rustc_diagnostic_item = "RefCell"]
849#[stable(feature = "rust1", since = "1.0.0")]
850pub struct RefCell<T: ?Sized> {
851 borrow: Cell<BorrowCounter>,
852 // Stores the location of the earliest currently active borrow.
853 // This gets updated whenever we go from having zero borrows
854 // to having a single borrow. When a borrow occurs, this gets included
855 // in the generated `BorrowError`/`BorrowMutError`
856 #[cfg(feature = "debug_refcell")]
857 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
858 value: UnsafeCell<T>,
859}
860
861/// An error returned by [`RefCell::try_borrow`].
862#[stable(feature = "try_borrow", since = "1.13.0")]
863#[non_exhaustive]
864#[derive(Debug)]
865pub struct BorrowError {
866 #[cfg(feature = "debug_refcell")]
867 location: &'static crate::panic::Location<'static>,
868}
869
870#[stable(feature = "try_borrow", since = "1.13.0")]
871impl Display for BorrowError {
872 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
873 #[cfg(feature = "debug_refcell")]
874 let res = write!(
875 f,
876 "RefCell already mutably borrowed; a previous borrow was at {}",
877 self.location
878 );
879
880 #[cfg(not(feature = "debug_refcell"))]
881 let res = Display::fmt("RefCell already mutably borrowed", f);
882
883 res
884 }
885}
886
887/// An error returned by [`RefCell::try_borrow_mut`].
888#[stable(feature = "try_borrow", since = "1.13.0")]
889#[non_exhaustive]
890#[derive(Debug)]
891pub struct BorrowMutError {
892 #[cfg(feature = "debug_refcell")]
893 location: &'static crate::panic::Location<'static>,
894}
895
896#[stable(feature = "try_borrow", since = "1.13.0")]
897impl Display for BorrowMutError {
898 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
899 #[cfg(feature = "debug_refcell")]
900 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
901
902 #[cfg(not(feature = "debug_refcell"))]
903 let res = Display::fmt("RefCell already borrowed", f);
904
905 res
906 }
907}
908
909// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
910#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
911#[track_caller]
912#[cold]
913const fn panic_already_borrowed(err: BorrowMutError) -> ! {
914 const_panic!(
915 "RefCell already borrowed",
916 "{err}",
917 err: BorrowMutError = err,
918 )
919}
920
921// This ensures the panicking code is outlined from `borrow` for `RefCell`.
922#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
923#[track_caller]
924#[cold]
925const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
926 const_panic!(
927 "RefCell already mutably borrowed",
928 "{err}",
929 err: BorrowError = err,
930 )
931}
932
933// Positive values represent the number of `Ref` active. Negative values
934// represent the number of `RefMut` active. Multiple `RefMut`s can only be
935// active at a time if they refer to distinct, nonoverlapping components of a
936// `RefCell` (e.g., different ranges of a slice).
937//
938// `Ref` and `RefMut` are both two words in size, and so there will likely never
939// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
940// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
941// However, this is not a guarantee, as a pathological program could repeatedly
942// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
943// explicitly check for overflow and underflow in order to avoid unsafety, or at
944// least behave correctly in the event that overflow or underflow happens (e.g.,
945// see BorrowRef::new).
946type BorrowCounter = isize;
947const UNUSED: BorrowCounter = 0;
948
949#[inline(always)]
950const fn is_writing(x: BorrowCounter) -> bool {
951 x < UNUSED
952}
953
954#[inline(always)]
955const fn is_reading(x: BorrowCounter) -> bool {
956 x > UNUSED
957}
958
959impl<T> RefCell<T> {
960 /// Creates a new `RefCell` containing `value`.
961 ///
962 /// # Examples
963 ///
964 /// ```
965 /// use std::cell::RefCell;
966 ///
967 /// let c = RefCell::new(5);
968 /// ```
969 #[stable(feature = "rust1", since = "1.0.0")]
970 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
971 #[inline]
972 pub const fn new(value: T) -> RefCell<T> {
973 RefCell {
974 value: UnsafeCell::new(value),
975 borrow: Cell::new(UNUSED),
976 #[cfg(feature = "debug_refcell")]
977 borrowed_at: Cell::new(None),
978 }
979 }
980
981 /// Consumes the `RefCell`, returning the wrapped value.
982 ///
983 /// # Examples
984 ///
985 /// ```
986 /// use std::cell::RefCell;
987 ///
988 /// let c = RefCell::new(5);
989 ///
990 /// let five = c.into_inner();
991 /// ```
992 #[stable(feature = "rust1", since = "1.0.0")]
993 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
994 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
995 #[inline]
996 pub const fn into_inner(self) -> T {
997 // Since this function takes `self` (the `RefCell`) by value, the
998 // compiler statically verifies that it is not currently borrowed.
999 self.value.into_inner()
1000 }
1001
1002 /// Replaces the wrapped value with a new one, returning the old value,
1003 /// without deinitializing either one.
1004 ///
1005 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
1006 ///
1007 /// # Panics
1008 ///
1009 /// Panics if the value is currently borrowed.
1010 ///
1011 /// # Examples
1012 ///
1013 /// ```
1014 /// use std::cell::RefCell;
1015 /// let cell = RefCell::new(5);
1016 /// let old_value = cell.replace(6);
1017 /// assert_eq!(old_value, 5);
1018 /// assert_eq!(cell, RefCell::new(6));
1019 /// ```
1020 #[inline]
1021 #[stable(feature = "refcell_replace", since = "1.24.0")]
1022 #[track_caller]
1023 #[rustc_confusables("swap")]
1024 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1025 #[rustc_should_not_be_called_on_const_items]
1026 pub const fn replace(&self, t: T) -> T {
1027 mem::replace(&mut self.borrow_mut(), t)
1028 }
1029
1030 /// Replaces the wrapped value with a new one computed from `f`, returning
1031 /// the old value, without deinitializing either one.
1032 ///
1033 /// # Panics
1034 ///
1035 /// Panics if the value is currently borrowed.
1036 ///
1037 /// # Examples
1038 ///
1039 /// ```
1040 /// use std::cell::RefCell;
1041 /// let cell = RefCell::new(5);
1042 /// let old_value = cell.replace_with(|&mut old| old + 1);
1043 /// assert_eq!(old_value, 5);
1044 /// assert_eq!(cell, RefCell::new(6));
1045 /// ```
1046 #[inline]
1047 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1048 #[track_caller]
1049 #[rustc_should_not_be_called_on_const_items]
1050 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1051 let mut_borrow = &mut *self.borrow_mut();
1052 let replacement = f(mut_borrow);
1053 mem::replace(mut_borrow, replacement)
1054 }
1055
1056 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1057 /// without deinitializing either one.
1058 ///
1059 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1060 ///
1061 /// # Panics
1062 ///
1063 /// Panics if the value in either `RefCell` is currently borrowed, or
1064 /// if `self` and `other` point to the same `RefCell`.
1065 ///
1066 /// # Examples
1067 ///
1068 /// ```
1069 /// use std::cell::RefCell;
1070 /// let c = RefCell::new(5);
1071 /// let d = RefCell::new(6);
1072 /// c.swap(&d);
1073 /// assert_eq!(c, RefCell::new(6));
1074 /// assert_eq!(d, RefCell::new(5));
1075 /// ```
1076 #[inline]
1077 #[stable(feature = "refcell_swap", since = "1.24.0")]
1078 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1079 #[rustc_should_not_be_called_on_const_items]
1080 pub const fn swap(&self, other: &Self) {
1081 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1082 }
1083}
1084
1085impl<T: ?Sized> RefCell<T> {
1086 /// Immutably borrows the wrapped value.
1087 ///
1088 /// The borrow lasts until the returned `Ref` exits scope. Multiple
1089 /// immutable borrows can be taken out at the same time.
1090 ///
1091 /// # Panics
1092 ///
1093 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1094 /// [`try_borrow`](#method.try_borrow).
1095 ///
1096 /// # Examples
1097 ///
1098 /// ```
1099 /// use std::cell::RefCell;
1100 ///
1101 /// let c = RefCell::new(5);
1102 ///
1103 /// let borrowed_five = c.borrow();
1104 /// let borrowed_five2 = c.borrow();
1105 /// ```
1106 ///
1107 /// An example of panic:
1108 ///
1109 /// ```should_panic
1110 /// use std::cell::RefCell;
1111 ///
1112 /// let c = RefCell::new(5);
1113 ///
1114 /// let m = c.borrow_mut();
1115 /// let b = c.borrow(); // this causes a panic
1116 /// ```
1117 #[stable(feature = "rust1", since = "1.0.0")]
1118 #[inline]
1119 #[track_caller]
1120 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1121 #[rustc_should_not_be_called_on_const_items]
1122 pub const fn borrow(&self) -> Ref<'_, T> {
1123 match self.try_borrow() {
1124 Ok(b) => b,
1125 Err(err) => panic_already_mutably_borrowed(err),
1126 }
1127 }
1128
1129 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1130 /// borrowed.
1131 ///
1132 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1133 /// taken out at the same time.
1134 ///
1135 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1136 ///
1137 /// # Examples
1138 ///
1139 /// ```
1140 /// use std::cell::RefCell;
1141 ///
1142 /// let c = RefCell::new(5);
1143 ///
1144 /// {
1145 /// let m = c.borrow_mut();
1146 /// assert!(c.try_borrow().is_err());
1147 /// }
1148 ///
1149 /// {
1150 /// let m = c.borrow();
1151 /// assert!(c.try_borrow().is_ok());
1152 /// }
1153 /// ```
1154 #[stable(feature = "try_borrow", since = "1.13.0")]
1155 #[inline]
1156 #[cfg_attr(feature = "debug_refcell", track_caller)]
1157 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1158 #[rustc_should_not_be_called_on_const_items]
1159 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1160 match BorrowRef::new(&self.borrow) {
1161 Some(b) => {
1162 #[cfg(feature = "debug_refcell")]
1163 {
1164 // `borrowed_at` is always the *first* active borrow
1165 if b.borrow.get() == 1 {
1166 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1167 }
1168 }
1169
1170 // SAFETY: `BorrowRef` ensures that there is only immutable access
1171 // to the value while borrowed.
1172 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1173 Ok(Ref { value, borrow: b })
1174 }
1175 None => Err(BorrowError {
1176 // If a borrow occurred, then we must already have an outstanding borrow,
1177 // so `borrowed_at` will be `Some`
1178 #[cfg(feature = "debug_refcell")]
1179 location: self.borrowed_at.get().unwrap(),
1180 }),
1181 }
1182 }
1183
1184 /// Mutably borrows the wrapped value.
1185 ///
1186 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1187 /// from it exit scope. The value cannot be borrowed while this borrow is
1188 /// active.
1189 ///
1190 /// # Panics
1191 ///
1192 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1193 /// [`try_borrow_mut`](#method.try_borrow_mut).
1194 ///
1195 /// # Examples
1196 ///
1197 /// ```
1198 /// use std::cell::RefCell;
1199 ///
1200 /// let c = RefCell::new("hello".to_owned());
1201 ///
1202 /// *c.borrow_mut() = "bonjour".to_owned();
1203 ///
1204 /// assert_eq!(&*c.borrow(), "bonjour");
1205 /// ```
1206 ///
1207 /// An example of panic:
1208 ///
1209 /// ```should_panic
1210 /// use std::cell::RefCell;
1211 ///
1212 /// let c = RefCell::new(5);
1213 /// let m = c.borrow();
1214 ///
1215 /// let b = c.borrow_mut(); // this causes a panic
1216 /// ```
1217 #[stable(feature = "rust1", since = "1.0.0")]
1218 #[inline]
1219 #[track_caller]
1220 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1221 #[rustc_should_not_be_called_on_const_items]
1222 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1223 match self.try_borrow_mut() {
1224 Ok(b) => b,
1225 Err(err) => panic_already_borrowed(err),
1226 }
1227 }
1228
1229 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1230 ///
1231 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1232 /// from it exit scope. The value cannot be borrowed while this borrow is
1233 /// active.
1234 ///
1235 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1236 ///
1237 /// # Examples
1238 ///
1239 /// ```
1240 /// use std::cell::RefCell;
1241 ///
1242 /// let c = RefCell::new(5);
1243 ///
1244 /// {
1245 /// let m = c.borrow();
1246 /// assert!(c.try_borrow_mut().is_err());
1247 /// }
1248 ///
1249 /// assert!(c.try_borrow_mut().is_ok());
1250 /// ```
1251 #[stable(feature = "try_borrow", since = "1.13.0")]
1252 #[inline]
1253 #[cfg_attr(feature = "debug_refcell", track_caller)]
1254 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1255 #[rustc_should_not_be_called_on_const_items]
1256 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1257 match BorrowRefMut::new(&self.borrow) {
1258 Some(b) => {
1259 #[cfg(feature = "debug_refcell")]
1260 {
1261 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1262 }
1263
1264 // SAFETY: `BorrowRefMut` guarantees unique access.
1265 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1266 Ok(RefMut { value, borrow: b, marker: PhantomData })
1267 }
1268 None => Err(BorrowMutError {
1269 // If a borrow occurred, then we must already have an outstanding borrow,
1270 // so `borrowed_at` will be `Some`
1271 #[cfg(feature = "debug_refcell")]
1272 location: self.borrowed_at.get().unwrap(),
1273 }),
1274 }
1275 }
1276
1277 /// Returns a raw pointer to the underlying data in this cell.
1278 ///
1279 /// # Examples
1280 ///
1281 /// ```
1282 /// use std::cell::RefCell;
1283 ///
1284 /// let c = RefCell::new(5);
1285 ///
1286 /// let ptr = c.as_ptr();
1287 /// ```
1288 #[inline]
1289 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1290 #[rustc_as_ptr]
1291 #[rustc_never_returns_null_ptr]
1292 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1293 pub const fn as_ptr(&self) -> *mut T {
1294 self.value.get()
1295 }
1296
1297 /// Returns a mutable reference to the underlying data.
1298 ///
1299 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1300 /// that no borrows to the underlying data exist. The dynamic checks inherent
1301 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1302 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1303 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1304 /// consider using the unstable [`undo_leak`] method.
1305 ///
1306 /// This method can only be called if `RefCell` can be mutably borrowed,
1307 /// which in general is only the case directly after the `RefCell` has
1308 /// been created. In these situations, skipping the aforementioned dynamic
1309 /// borrowing checks may yield better ergonomics and runtime-performance.
1310 ///
1311 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1312 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1313 ///
1314 /// [`borrow_mut`]: RefCell::borrow_mut()
1315 /// [`forget()`]: mem::forget
1316 /// [`undo_leak`]: RefCell::undo_leak()
1317 ///
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// use std::cell::RefCell;
1322 ///
1323 /// let mut c = RefCell::new(5);
1324 /// *c.get_mut() += 1;
1325 ///
1326 /// assert_eq!(c, RefCell::new(6));
1327 /// ```
1328 #[inline]
1329 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1330 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1331 pub const fn get_mut(&mut self) -> &mut T {
1332 self.value.get_mut()
1333 }
1334
1335 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1336 ///
1337 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1338 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1339 /// if some `Ref` or `RefMut` borrows have been leaked.
1340 ///
1341 /// [`get_mut`]: RefCell::get_mut()
1342 ///
1343 /// # Examples
1344 ///
1345 /// ```
1346 /// #![feature(cell_leak)]
1347 /// use std::cell::RefCell;
1348 ///
1349 /// let mut c = RefCell::new(0);
1350 /// std::mem::forget(c.borrow_mut());
1351 ///
1352 /// assert!(c.try_borrow().is_err());
1353 /// c.undo_leak();
1354 /// assert!(c.try_borrow().is_ok());
1355 /// ```
1356 #[unstable(feature = "cell_leak", issue = "69099")]
1357 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1358 pub const fn undo_leak(&mut self) -> &mut T {
1359 *self.borrow.get_mut() = UNUSED;
1360 self.get_mut()
1361 }
1362
1363 /// Immutably borrows the wrapped value, returning an error if the value is
1364 /// currently mutably borrowed.
1365 ///
1366 /// # Safety
1367 ///
1368 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1369 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1370 /// borrowing the `RefCell` while the reference returned by this method
1371 /// is alive is undefined behavior.
1372 ///
1373 /// # Examples
1374 ///
1375 /// ```
1376 /// use std::cell::RefCell;
1377 ///
1378 /// let c = RefCell::new(5);
1379 ///
1380 /// {
1381 /// let m = c.borrow_mut();
1382 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1383 /// }
1384 ///
1385 /// {
1386 /// let m = c.borrow();
1387 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1388 /// }
1389 /// ```
1390 #[stable(feature = "borrow_state", since = "1.37.0")]
1391 #[inline]
1392 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1393 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1394 if !is_writing(self.borrow.get()) {
1395 // SAFETY: We check that nobody is actively writing now, but it is
1396 // the caller's responsibility to ensure that nobody writes until
1397 // the returned reference is no longer in use.
1398 // Also, `self.value.get()` refers to the value owned by `self`
1399 // and is thus guaranteed to be valid for the lifetime of `self`.
1400 Ok(unsafe { &*self.value.get() })
1401 } else {
1402 Err(BorrowError {
1403 // If a borrow occurred, then we must already have an outstanding borrow,
1404 // so `borrowed_at` will be `Some`
1405 #[cfg(feature = "debug_refcell")]
1406 location: self.borrowed_at.get().unwrap(),
1407 })
1408 }
1409 }
1410}
1411
1412impl<T: Default> RefCell<T> {
1413 /// Takes the wrapped value, leaving `Default::default()` in its place.
1414 ///
1415 /// # Panics
1416 ///
1417 /// Panics if the value is currently borrowed.
1418 ///
1419 /// # Examples
1420 ///
1421 /// ```
1422 /// use std::cell::RefCell;
1423 ///
1424 /// let c = RefCell::new(5);
1425 /// let five = c.take();
1426 ///
1427 /// assert_eq!(five, 5);
1428 /// assert_eq!(c.into_inner(), 0);
1429 /// ```
1430 #[stable(feature = "refcell_take", since = "1.50.0")]
1431 pub fn take(&self) -> T {
1432 self.replace(Default::default())
1433 }
1434}
1435
1436#[stable(feature = "rust1", since = "1.0.0")]
1437unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1438
1439#[stable(feature = "rust1", since = "1.0.0")]
1440impl<T: ?Sized> !Sync for RefCell<T> {}
1441
1442#[stable(feature = "rust1", since = "1.0.0")]
1443impl<T: Clone> Clone for RefCell<T> {
1444 /// # Panics
1445 ///
1446 /// Panics if the value is currently mutably borrowed.
1447 #[inline]
1448 #[track_caller]
1449 fn clone(&self) -> RefCell<T> {
1450 RefCell::new(self.borrow().clone())
1451 }
1452
1453 /// # Panics
1454 ///
1455 /// Panics if `source` is currently mutably borrowed.
1456 #[inline]
1457 #[track_caller]
1458 fn clone_from(&mut self, source: &Self) {
1459 self.get_mut().clone_from(&source.borrow())
1460 }
1461}
1462
1463#[stable(feature = "rust1", since = "1.0.0")]
1464#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1465impl<T: [const] Default> const Default for RefCell<T> {
1466 /// Creates a `RefCell<T>`, with the `Default` value for T.
1467 #[inline]
1468 fn default() -> RefCell<T> {
1469 RefCell::new(Default::default())
1470 }
1471}
1472
1473#[stable(feature = "rust1", since = "1.0.0")]
1474impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1475 /// # Panics
1476 ///
1477 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1478 #[inline]
1479 fn eq(&self, other: &RefCell<T>) -> bool {
1480 *self.borrow() == *other.borrow()
1481 }
1482}
1483
1484#[stable(feature = "cell_eq", since = "1.2.0")]
1485impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1486
1487#[stable(feature = "cell_ord", since = "1.10.0")]
1488impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1489 /// # Panics
1490 ///
1491 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1492 #[inline]
1493 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1494 self.borrow().partial_cmp(&*other.borrow())
1495 }
1496
1497 /// # Panics
1498 ///
1499 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1500 #[inline]
1501 fn lt(&self, other: &RefCell<T>) -> bool {
1502 *self.borrow() < *other.borrow()
1503 }
1504
1505 /// # Panics
1506 ///
1507 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1508 #[inline]
1509 fn le(&self, other: &RefCell<T>) -> bool {
1510 *self.borrow() <= *other.borrow()
1511 }
1512
1513 /// # Panics
1514 ///
1515 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1516 #[inline]
1517 fn gt(&self, other: &RefCell<T>) -> bool {
1518 *self.borrow() > *other.borrow()
1519 }
1520
1521 /// # Panics
1522 ///
1523 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1524 #[inline]
1525 fn ge(&self, other: &RefCell<T>) -> bool {
1526 *self.borrow() >= *other.borrow()
1527 }
1528}
1529
1530#[stable(feature = "cell_ord", since = "1.10.0")]
1531impl<T: ?Sized + Ord> Ord for RefCell<T> {
1532 /// # Panics
1533 ///
1534 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1535 #[inline]
1536 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1537 self.borrow().cmp(&*other.borrow())
1538 }
1539}
1540
1541#[stable(feature = "cell_from", since = "1.12.0")]
1542#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1543impl<T> const From<T> for RefCell<T> {
1544 /// Creates a new `RefCell<T>` containing the given value.
1545 fn from(t: T) -> RefCell<T> {
1546 RefCell::new(t)
1547 }
1548}
1549
1550#[unstable(feature = "coerce_unsized", issue = "18598")]
1551impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1552
1553struct BorrowRef<'b> {
1554 borrow: &'b Cell<BorrowCounter>,
1555}
1556
1557impl<'b> BorrowRef<'b> {
1558 #[inline]
1559 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1560 let b = borrow.get().wrapping_add(1);
1561 if !is_reading(b) {
1562 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1563 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1564 // due to Rust's reference aliasing rules
1565 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1566 // into isize::MIN (the max amount of writing borrows) so we can't allow
1567 // an additional read borrow because isize can't represent so many read borrows
1568 // (this can only happen if you mem::forget more than a small constant amount of
1569 // `Ref`s, which is not good practice)
1570 None
1571 } else {
1572 // Incrementing borrow can result in a reading value (> 0) in these cases:
1573 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1574 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1575 // is large enough to represent having one more read borrow
1576 borrow.replace(b);
1577 Some(BorrowRef { borrow })
1578 }
1579 }
1580}
1581
1582#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1583impl const Drop for BorrowRef<'_> {
1584 #[inline]
1585 fn drop(&mut self) {
1586 let borrow = self.borrow.get();
1587 debug_assert!(is_reading(borrow));
1588 self.borrow.replace(borrow - 1);
1589 }
1590}
1591
1592#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1593impl const Clone for BorrowRef<'_> {
1594 #[inline]
1595 fn clone(&self) -> Self {
1596 // Since this Ref exists, we know the borrow flag
1597 // is a reading borrow.
1598 let borrow = self.borrow.get();
1599 debug_assert!(is_reading(borrow));
1600 // Prevent the borrow counter from overflowing into
1601 // a writing borrow.
1602 assert!(borrow != BorrowCounter::MAX);
1603 self.borrow.replace(borrow + 1);
1604 BorrowRef { borrow: self.borrow }
1605 }
1606}
1607
1608/// Wraps a borrowed reference to a value in a `RefCell` box.
1609/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1610///
1611/// See the [module-level documentation](self) for more.
1612#[stable(feature = "rust1", since = "1.0.0")]
1613#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1614#[rustc_diagnostic_item = "RefCellRef"]
1615pub struct Ref<'b, T: ?Sized + 'b> {
1616 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1617 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1618 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1619 value: NonNull<T>,
1620 borrow: BorrowRef<'b>,
1621}
1622
1623#[stable(feature = "rust1", since = "1.0.0")]
1624#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1625impl<T: ?Sized> const Deref for Ref<'_, T> {
1626 type Target = T;
1627
1628 #[inline]
1629 fn deref(&self) -> &T {
1630 // SAFETY: the value is accessible as long as we hold our borrow.
1631 unsafe { self.value.as_ref() }
1632 }
1633}
1634
1635#[unstable(feature = "deref_pure_trait", issue = "87121")]
1636unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1637
1638impl<'b, T: ?Sized> Ref<'b, T> {
1639 /// Copies a `Ref`.
1640 ///
1641 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1642 ///
1643 /// This is an associated function that needs to be used as
1644 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1645 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1646 /// a `RefCell`.
1647 #[stable(feature = "cell_extras", since = "1.15.0")]
1648 #[must_use]
1649 #[inline]
1650 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1651 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1652 Ref { value: orig.value, borrow: orig.borrow.clone() }
1653 }
1654
1655 /// Makes a new `Ref` for a component of the borrowed data.
1656 ///
1657 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1658 ///
1659 /// This is an associated function that needs to be used as `Ref::map(...)`.
1660 /// A method would interfere with methods of the same name on the contents
1661 /// of a `RefCell` used through `Deref`.
1662 ///
1663 /// # Examples
1664 ///
1665 /// ```
1666 /// use std::cell::{RefCell, Ref};
1667 ///
1668 /// let c = RefCell::new((5, 'b'));
1669 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1670 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1671 /// assert_eq!(*b2, 5)
1672 /// ```
1673 #[stable(feature = "cell_map", since = "1.8.0")]
1674 #[inline]
1675 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1676 where
1677 F: FnOnce(&T) -> &U,
1678 {
1679 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1680 }
1681
1682 /// Makes a new `Ref` for an optional component of the borrowed data. The
1683 /// original guard is returned as an `Err(..)` if the closure returns
1684 /// `None`.
1685 ///
1686 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1687 ///
1688 /// This is an associated function that needs to be used as
1689 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1690 /// name on the contents of a `RefCell` used through `Deref`.
1691 ///
1692 /// # Examples
1693 ///
1694 /// ```
1695 /// use std::cell::{RefCell, Ref};
1696 ///
1697 /// let c = RefCell::new(vec![1, 2, 3]);
1698 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1699 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1700 /// assert_eq!(*b2.unwrap(), 2);
1701 /// ```
1702 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1703 #[inline]
1704 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1705 where
1706 F: FnOnce(&T) -> Option<&U>,
1707 {
1708 match f(&*orig) {
1709 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1710 None => Err(orig),
1711 }
1712 }
1713
1714 /// Tries to makes a new `Ref` for a component of the borrowed data.
1715 /// On failure, the original guard is returned alongside with the error
1716 /// returned by the closure.
1717 ///
1718 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1719 ///
1720 /// This is an associated function that needs to be used as
1721 /// `Ref::try_map(...)`. A method would interfere with methods of the same
1722 /// name on the contents of a `RefCell` used through `Deref`.
1723 ///
1724 /// # Examples
1725 ///
1726 /// ```
1727 /// #![feature(refcell_try_map)]
1728 /// use std::cell::{RefCell, Ref};
1729 /// use std::str::{from_utf8, Utf8Error};
1730 ///
1731 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1732 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1733 /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1734 /// assert_eq!(&*b2.unwrap(), "🦀");
1735 ///
1736 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1737 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1738 /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1739 /// let (b3, e) = b2.unwrap_err();
1740 /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1741 /// assert_eq!(e.valid_up_to(), 0);
1742 /// ```
1743 #[unstable(feature = "refcell_try_map", issue = "143801")]
1744 #[inline]
1745 pub fn try_map<U: ?Sized, E>(
1746 orig: Ref<'b, T>,
1747 f: impl FnOnce(&T) -> Result<&U, E>,
1748 ) -> Result<Ref<'b, U>, (Self, E)> {
1749 match f(&*orig) {
1750 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1751 Err(e) => Err((orig, e)),
1752 }
1753 }
1754
1755 /// Splits a `Ref` into multiple `Ref`s for different components of the
1756 /// borrowed data.
1757 ///
1758 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1759 ///
1760 /// This is an associated function that needs to be used as
1761 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1762 /// name on the contents of a `RefCell` used through `Deref`.
1763 ///
1764 /// # Examples
1765 ///
1766 /// ```
1767 /// use std::cell::{Ref, RefCell};
1768 ///
1769 /// let cell = RefCell::new([1, 2, 3, 4]);
1770 /// let borrow = cell.borrow();
1771 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1772 /// assert_eq!(*begin, [1, 2]);
1773 /// assert_eq!(*end, [3, 4]);
1774 /// ```
1775 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1776 #[inline]
1777 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1778 where
1779 F: FnOnce(&T) -> (&U, &V),
1780 {
1781 let (a, b) = f(&*orig);
1782 let borrow = orig.borrow.clone();
1783 (
1784 Ref { value: NonNull::from(a), borrow },
1785 Ref { value: NonNull::from(b), borrow: orig.borrow },
1786 )
1787 }
1788
1789 /// Converts into a reference to the underlying data.
1790 ///
1791 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1792 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1793 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1794 /// have occurred in total.
1795 ///
1796 /// This is an associated function that needs to be used as
1797 /// `Ref::leak(...)`. A method would interfere with methods of the
1798 /// same name on the contents of a `RefCell` used through `Deref`.
1799 ///
1800 /// # Examples
1801 ///
1802 /// ```
1803 /// #![feature(cell_leak)]
1804 /// use std::cell::{RefCell, Ref};
1805 /// let cell = RefCell::new(0);
1806 ///
1807 /// let value = Ref::leak(cell.borrow());
1808 /// assert_eq!(*value, 0);
1809 ///
1810 /// assert!(cell.try_borrow().is_ok());
1811 /// assert!(cell.try_borrow_mut().is_err());
1812 /// ```
1813 #[unstable(feature = "cell_leak", issue = "69099")]
1814 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1815 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1816 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1817 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1818 // unique reference to the borrowed RefCell. No further mutable references can be created
1819 // from the original cell.
1820 mem::forget(orig.borrow);
1821 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1822 unsafe { orig.value.as_ref() }
1823 }
1824}
1825
1826#[unstable(feature = "coerce_unsized", issue = "18598")]
1827impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1828
1829#[stable(feature = "std_guard_impls", since = "1.20.0")]
1830impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1831 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1832 (**self).fmt(f)
1833 }
1834}
1835
1836impl<'b, T: ?Sized> RefMut<'b, T> {
1837 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1838 /// variant.
1839 ///
1840 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1841 ///
1842 /// This is an associated function that needs to be used as
1843 /// `RefMut::map(...)`. A method would interfere with methods of the same
1844 /// name on the contents of a `RefCell` used through `Deref`.
1845 ///
1846 /// # Examples
1847 ///
1848 /// ```
1849 /// use std::cell::{RefCell, RefMut};
1850 ///
1851 /// let c = RefCell::new((5, 'b'));
1852 /// {
1853 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1854 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1855 /// assert_eq!(*b2, 5);
1856 /// *b2 = 42;
1857 /// }
1858 /// assert_eq!(*c.borrow(), (42, 'b'));
1859 /// ```
1860 #[stable(feature = "cell_map", since = "1.8.0")]
1861 #[inline]
1862 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1863 where
1864 F: FnOnce(&mut T) -> &mut U,
1865 {
1866 let value = NonNull::from(f(&mut *orig));
1867 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1868 }
1869
1870 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1871 /// original guard is returned as an `Err(..)` if the closure returns
1872 /// `None`.
1873 ///
1874 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1875 ///
1876 /// This is an associated function that needs to be used as
1877 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1878 /// same name on the contents of a `RefCell` used through `Deref`.
1879 ///
1880 /// # Examples
1881 ///
1882 /// ```
1883 /// use std::cell::{RefCell, RefMut};
1884 ///
1885 /// let c = RefCell::new(vec![1, 2, 3]);
1886 ///
1887 /// {
1888 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1889 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1890 ///
1891 /// if let Ok(mut b2) = b2 {
1892 /// *b2 += 2;
1893 /// }
1894 /// }
1895 ///
1896 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1897 /// ```
1898 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1899 #[inline]
1900 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1901 where
1902 F: FnOnce(&mut T) -> Option<&mut U>,
1903 {
1904 // SAFETY: function holds onto an exclusive reference for the duration
1905 // of its call through `orig`, and the pointer is only de-referenced
1906 // inside of the function call never allowing the exclusive reference to
1907 // escape.
1908 match f(&mut *orig) {
1909 Some(value) => {
1910 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1911 }
1912 None => Err(orig),
1913 }
1914 }
1915
1916 /// Tries to makes a new `RefMut` for a component of the borrowed data.
1917 /// On failure, the original guard is returned alongside with the error
1918 /// returned by the closure.
1919 ///
1920 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1921 ///
1922 /// This is an associated function that needs to be used as
1923 /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1924 /// name on the contents of a `RefCell` used through `Deref`.
1925 ///
1926 /// # Examples
1927 ///
1928 /// ```
1929 /// #![feature(refcell_try_map)]
1930 /// use std::cell::{RefCell, RefMut};
1931 /// use std::str::{from_utf8_mut, Utf8Error};
1932 ///
1933 /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1934 /// {
1935 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1936 /// let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1937 /// let mut b2 = b2.unwrap();
1938 /// assert_eq!(&*b2, "hello");
1939 /// b2.make_ascii_uppercase();
1940 /// }
1941 /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1942 ///
1943 /// let c = RefCell::new(vec![0xFF]);
1944 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1945 /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1946 /// let (b3, e) = b2.unwrap_err();
1947 /// assert_eq!(*b3, vec![0xFF]);
1948 /// assert_eq!(e.valid_up_to(), 0);
1949 /// ```
1950 #[unstable(feature = "refcell_try_map", issue = "143801")]
1951 #[inline]
1952 pub fn try_map<U: ?Sized, E>(
1953 mut orig: RefMut<'b, T>,
1954 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1955 ) -> Result<RefMut<'b, U>, (Self, E)> {
1956 // SAFETY: function holds onto an exclusive reference for the duration
1957 // of its call through `orig`, and the pointer is only de-referenced
1958 // inside of the function call never allowing the exclusive reference to
1959 // escape.
1960 match f(&mut *orig) {
1961 Ok(value) => {
1962 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1963 }
1964 Err(e) => Err((orig, e)),
1965 }
1966 }
1967
1968 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1969 /// borrowed data.
1970 ///
1971 /// The underlying `RefCell` will remain mutably borrowed until both
1972 /// returned `RefMut`s go out of scope.
1973 ///
1974 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1975 ///
1976 /// This is an associated function that needs to be used as
1977 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1978 /// same name on the contents of a `RefCell` used through `Deref`.
1979 ///
1980 /// # Examples
1981 ///
1982 /// ```
1983 /// use std::cell::{RefCell, RefMut};
1984 ///
1985 /// let cell = RefCell::new([1, 2, 3, 4]);
1986 /// let borrow = cell.borrow_mut();
1987 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1988 /// assert_eq!(*begin, [1, 2]);
1989 /// assert_eq!(*end, [3, 4]);
1990 /// begin.copy_from_slice(&[4, 3]);
1991 /// end.copy_from_slice(&[2, 1]);
1992 /// ```
1993 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1994 #[inline]
1995 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1996 mut orig: RefMut<'b, T>,
1997 f: F,
1998 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1999 where
2000 F: FnOnce(&mut T) -> (&mut U, &mut V),
2001 {
2002 let borrow = orig.borrow.clone();
2003 let (a, b) = f(&mut *orig);
2004 (
2005 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
2006 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
2007 )
2008 }
2009
2010 /// Converts into a mutable reference to the underlying data.
2011 ///
2012 /// The underlying `RefCell` can not be borrowed from again and will always appear already
2013 /// mutably borrowed, making the returned reference the only to the interior.
2014 ///
2015 /// This is an associated function that needs to be used as
2016 /// `RefMut::leak(...)`. A method would interfere with methods of the
2017 /// same name on the contents of a `RefCell` used through `Deref`.
2018 ///
2019 /// # Examples
2020 ///
2021 /// ```
2022 /// #![feature(cell_leak)]
2023 /// use std::cell::{RefCell, RefMut};
2024 /// let cell = RefCell::new(0);
2025 ///
2026 /// let value = RefMut::leak(cell.borrow_mut());
2027 /// assert_eq!(*value, 0);
2028 /// *value = 1;
2029 ///
2030 /// assert!(cell.try_borrow_mut().is_err());
2031 /// ```
2032 #[unstable(feature = "cell_leak", issue = "69099")]
2033 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2034 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2035 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2036 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2037 // require a unique reference to the borrowed RefCell. No further references can be created
2038 // from the original cell within that lifetime, making the current borrow the only
2039 // reference for the remaining lifetime.
2040 mem::forget(orig.borrow);
2041 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2042 unsafe { orig.value.as_mut() }
2043 }
2044}
2045
2046struct BorrowRefMut<'b> {
2047 borrow: &'b Cell<BorrowCounter>,
2048}
2049
2050#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2051impl const Drop for BorrowRefMut<'_> {
2052 #[inline]
2053 fn drop(&mut self) {
2054 let borrow = self.borrow.get();
2055 debug_assert!(is_writing(borrow));
2056 self.borrow.replace(borrow + 1);
2057 }
2058}
2059
2060impl<'b> BorrowRefMut<'b> {
2061 #[inline]
2062 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2063 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2064 // mutable reference, and so there must currently be no existing
2065 // references. Thus, while clone increments the mutable refcount, here
2066 // we explicitly only allow going from UNUSED to UNUSED - 1.
2067 match borrow.get() {
2068 UNUSED => {
2069 borrow.replace(UNUSED - 1);
2070 Some(BorrowRefMut { borrow })
2071 }
2072 _ => None,
2073 }
2074 }
2075
2076 // Clones a `BorrowRefMut`.
2077 //
2078 // This is only valid if each `BorrowRefMut` is used to track a mutable
2079 // reference to a distinct, nonoverlapping range of the original object.
2080 // This isn't in a Clone impl so that code doesn't call this implicitly.
2081 #[inline]
2082 fn clone(&self) -> BorrowRefMut<'b> {
2083 let borrow = self.borrow.get();
2084 debug_assert!(is_writing(borrow));
2085 // Prevent the borrow counter from underflowing.
2086 assert!(borrow != BorrowCounter::MIN);
2087 self.borrow.set(borrow - 1);
2088 BorrowRefMut { borrow: self.borrow }
2089 }
2090}
2091
2092/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2093///
2094/// See the [module-level documentation](self) for more.
2095#[stable(feature = "rust1", since = "1.0.0")]
2096#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2097#[rustc_diagnostic_item = "RefCellRefMut"]
2098pub struct RefMut<'b, T: ?Sized + 'b> {
2099 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2100 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2101 value: NonNull<T>,
2102 borrow: BorrowRefMut<'b>,
2103 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2104 marker: PhantomData<&'b mut T>,
2105}
2106
2107#[stable(feature = "rust1", since = "1.0.0")]
2108#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2109impl<T: ?Sized> const Deref for RefMut<'_, T> {
2110 type Target = T;
2111
2112 #[inline]
2113 fn deref(&self) -> &T {
2114 // SAFETY: the value is accessible as long as we hold our borrow.
2115 unsafe { self.value.as_ref() }
2116 }
2117}
2118
2119#[stable(feature = "rust1", since = "1.0.0")]
2120#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2121impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2122 #[inline]
2123 fn deref_mut(&mut self) -> &mut T {
2124 // SAFETY: the value is accessible as long as we hold our borrow.
2125 unsafe { self.value.as_mut() }
2126 }
2127}
2128
2129#[unstable(feature = "deref_pure_trait", issue = "87121")]
2130unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2131
2132#[unstable(feature = "coerce_unsized", issue = "18598")]
2133impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2134
2135#[stable(feature = "std_guard_impls", since = "1.20.0")]
2136impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2137 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2138 (**self).fmt(f)
2139 }
2140}
2141
2142/// The core primitive for interior mutability in Rust.
2143///
2144/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2145/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2146/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2147/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2148/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2149///
2150/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2151/// use `UnsafeCell` to wrap their data.
2152///
2153/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2154/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2155/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2156///
2157/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2158/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2159/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2160/// [`core::sync::atomic`].
2161///
2162/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2163/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2164/// correctly.
2165///
2166/// [`.get()`]: `UnsafeCell::get`
2167/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2168///
2169/// # Aliasing rules
2170///
2171/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2172///
2173/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2174/// you must not access the data in any way that contradicts that reference for the remainder of
2175/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2176/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2177/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2178/// `&mut T` reference that is released to safe code, then you must not access the data within the
2179/// `UnsafeCell` until that reference expires.
2180///
2181/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2182/// until the reference expires. As a special exception, given an `&T`, any part of it that is
2183/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2184/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2185/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2186/// *every part of it* (including padding) is inside an `UnsafeCell`.
2187///
2188/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2189/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2190/// memory has not yet been deallocated.
2191///
2192/// To assist with proper design, the following scenarios are explicitly declared legal
2193/// for single-threaded code:
2194///
2195/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2196/// references, but not with a `&mut T`
2197///
2198/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2199/// co-exist with it. A `&mut T` must always be unique.
2200///
2201/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2202/// `&UnsafeCell<T>` references alias the cell) is
2203/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2204/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2205/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2206/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2207/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2208/// may be aliased for the duration of that `&mut` borrow.
2209/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2210/// a `&mut T`.
2211///
2212/// [`.get_mut()`]: `UnsafeCell::get_mut`
2213///
2214/// # Memory layout
2215///
2216/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2217/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2218/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2219/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2220/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2221/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2222/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2223/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2224/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2225/// thus this can cause distortions in the type size in these cases.
2226///
2227/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2228/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2229/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2230/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2231/// same memory layout, the following is not allowed and undefined behavior:
2232///
2233/// ```rust,compile_fail
2234/// # use std::cell::UnsafeCell;
2235/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2236/// let t = ptr as *const UnsafeCell<T> as *mut T;
2237/// // This is undefined behavior, because the `*mut T` pointer
2238/// // was not obtained through `.get()` nor `.raw_get()`:
2239/// unsafe { &mut *t }
2240/// }
2241/// ```
2242///
2243/// Instead, do this:
2244///
2245/// ```rust
2246/// # use std::cell::UnsafeCell;
2247/// // Safety: the caller must ensure that there are no references that
2248/// // point to the *contents* of the `UnsafeCell`.
2249/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2250/// unsafe { &mut *ptr.get() }
2251/// }
2252/// ```
2253///
2254/// Converting in the other direction from a `&mut T`
2255/// to an `&UnsafeCell<T>` is allowed:
2256///
2257/// ```rust
2258/// # use std::cell::UnsafeCell;
2259/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2260/// let t = ptr as *mut T as *const UnsafeCell<T>;
2261/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2262/// unsafe { &*t }
2263/// }
2264/// ```
2265///
2266/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2267/// [`.raw_get()`]: `UnsafeCell::raw_get`
2268///
2269/// # Examples
2270///
2271/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2272/// there being multiple references aliasing the cell:
2273///
2274/// ```
2275/// use std::cell::UnsafeCell;
2276///
2277/// let x: UnsafeCell<i32> = 42.into();
2278/// // Get multiple / concurrent / shared references to the same `x`.
2279/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2280///
2281/// unsafe {
2282/// // SAFETY: within this scope there are no other references to `x`'s contents,
2283/// // so ours is effectively unique.
2284/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2285/// *p1_exclusive += 27; // |
2286/// } // <---------- cannot go beyond this point -------------------+
2287///
2288/// unsafe {
2289/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2290/// // so we can have multiple shared accesses concurrently.
2291/// let p2_shared: &i32 = &*p2.get();
2292/// assert_eq!(*p2_shared, 42 + 27);
2293/// let p1_shared: &i32 = &*p1.get();
2294/// assert_eq!(*p1_shared, *p2_shared);
2295/// }
2296/// ```
2297///
2298/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2299/// implies exclusive access to its `T`:
2300///
2301/// ```rust
2302/// #![forbid(unsafe_code)]
2303/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2304/// // `unsafe` here.
2305/// use std::cell::UnsafeCell;
2306///
2307/// let mut x: UnsafeCell<i32> = 42.into();
2308///
2309/// // Get a compile-time-checked unique reference to `x`.
2310/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2311/// // With an exclusive reference, we can mutate the contents for free.
2312/// *p_unique.get_mut() = 0;
2313/// // Or, equivalently:
2314/// x = UnsafeCell::new(0);
2315///
2316/// // When we own the value, we can extract the contents for free.
2317/// let contents: i32 = x.into_inner();
2318/// assert_eq!(contents, 0);
2319/// ```
2320#[lang = "unsafe_cell"]
2321#[stable(feature = "rust1", since = "1.0.0")]
2322#[repr(transparent)]
2323#[rustc_pub_transparent]
2324pub struct UnsafeCell<T: ?Sized> {
2325 value: T,
2326}
2327
2328#[stable(feature = "rust1", since = "1.0.0")]
2329impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2330
2331impl<T> UnsafeCell<T> {
2332 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2333 /// value.
2334 ///
2335 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2336 ///
2337 /// # Examples
2338 ///
2339 /// ```
2340 /// use std::cell::UnsafeCell;
2341 ///
2342 /// let uc = UnsafeCell::new(5);
2343 /// ```
2344 #[stable(feature = "rust1", since = "1.0.0")]
2345 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2346 #[inline(always)]
2347 pub const fn new(value: T) -> UnsafeCell<T> {
2348 UnsafeCell { value }
2349 }
2350
2351 /// Unwraps the value, consuming the cell.
2352 ///
2353 /// # Examples
2354 ///
2355 /// ```
2356 /// use std::cell::UnsafeCell;
2357 ///
2358 /// let uc = UnsafeCell::new(5);
2359 ///
2360 /// let five = uc.into_inner();
2361 /// ```
2362 #[inline(always)]
2363 #[stable(feature = "rust1", since = "1.0.0")]
2364 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2365 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2366 pub const fn into_inner(self) -> T {
2367 self.value
2368 }
2369
2370 /// Replace the value in this `UnsafeCell` and return the old value.
2371 ///
2372 /// # Safety
2373 ///
2374 /// The caller must take care to avoid aliasing and data races.
2375 ///
2376 /// - It is Undefined Behavior to allow calls to race with
2377 /// any other access to the wrapped value.
2378 /// - It is Undefined Behavior to call this while any other
2379 /// reference(s) to the wrapped value are alive.
2380 ///
2381 /// # Examples
2382 ///
2383 /// ```
2384 /// #![feature(unsafe_cell_access)]
2385 /// use std::cell::UnsafeCell;
2386 ///
2387 /// let uc = UnsafeCell::new(5);
2388 ///
2389 /// let old = unsafe { uc.replace(10) };
2390 /// assert_eq!(old, 5);
2391 /// ```
2392 #[inline]
2393 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2394 #[rustc_should_not_be_called_on_const_items]
2395 pub const unsafe fn replace(&self, value: T) -> T {
2396 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2397 unsafe { ptr::replace(self.get(), value) }
2398 }
2399}
2400
2401impl<T: ?Sized> UnsafeCell<T> {
2402 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2403 ///
2404 /// # Examples
2405 ///
2406 /// ```
2407 /// use std::cell::UnsafeCell;
2408 ///
2409 /// let mut val = 42;
2410 /// let uc = UnsafeCell::from_mut(&mut val);
2411 ///
2412 /// *uc.get_mut() -= 1;
2413 /// assert_eq!(*uc.get_mut(), 41);
2414 /// ```
2415 #[inline(always)]
2416 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2417 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2418 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2419 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2420 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2421 }
2422
2423 /// Gets a mutable pointer to the wrapped value.
2424 ///
2425 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2426 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2427 /// caveats.
2428 ///
2429 /// # Examples
2430 ///
2431 /// ```
2432 /// use std::cell::UnsafeCell;
2433 ///
2434 /// let uc = UnsafeCell::new(5);
2435 ///
2436 /// let five = uc.get();
2437 /// ```
2438 #[inline(always)]
2439 #[stable(feature = "rust1", since = "1.0.0")]
2440 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2441 #[rustc_as_ptr]
2442 #[rustc_never_returns_null_ptr]
2443 #[rustc_should_not_be_called_on_const_items]
2444 pub const fn get(&self) -> *mut T {
2445 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2446 // #[repr(transparent)]. This exploits std's special status, there is
2447 // no guarantee for user code that this will work in future versions of the compiler!
2448 self as *const UnsafeCell<T> as *const T as *mut T
2449 }
2450
2451 /// Returns a mutable reference to the underlying data.
2452 ///
2453 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2454 /// guarantees that we possess the only reference.
2455 ///
2456 /// # Examples
2457 ///
2458 /// ```
2459 /// use std::cell::UnsafeCell;
2460 ///
2461 /// let mut c = UnsafeCell::new(5);
2462 /// *c.get_mut() += 1;
2463 ///
2464 /// assert_eq!(*c.get_mut(), 6);
2465 /// ```
2466 #[inline(always)]
2467 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2468 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2469 pub const fn get_mut(&mut self) -> &mut T {
2470 &mut self.value
2471 }
2472
2473 /// Gets a mutable pointer to the wrapped value.
2474 /// The difference from [`get`] is that this function accepts a raw pointer,
2475 /// which is useful to avoid the creation of temporary references.
2476 ///
2477 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2478 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2479 /// caveats.
2480 ///
2481 /// [`get`]: UnsafeCell::get()
2482 ///
2483 /// # Examples
2484 ///
2485 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2486 /// calling `get` would require creating a reference to uninitialized data:
2487 ///
2488 /// ```
2489 /// use std::cell::UnsafeCell;
2490 /// use std::mem::MaybeUninit;
2491 ///
2492 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2493 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2494 /// // avoid below which references to uninitialized data
2495 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2496 /// let uc = unsafe { m.assume_init() };
2497 ///
2498 /// assert_eq!(uc.into_inner(), 5);
2499 /// ```
2500 #[inline(always)]
2501 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2502 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2503 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2504 pub const fn raw_get(this: *const Self) -> *mut T {
2505 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2506 // #[repr(transparent)]. This exploits std's special status, there is
2507 // no guarantee for user code that this will work in future versions of the compiler!
2508 this as *const T as *mut T
2509 }
2510
2511 /// Get a shared reference to the value within the `UnsafeCell`.
2512 ///
2513 /// # Safety
2514 ///
2515 /// - It is Undefined Behavior to call this while any mutable
2516 /// reference to the wrapped value is alive.
2517 /// - Mutating the wrapped value while the returned
2518 /// reference is alive is Undefined Behavior.
2519 ///
2520 /// # Examples
2521 ///
2522 /// ```
2523 /// #![feature(unsafe_cell_access)]
2524 /// use std::cell::UnsafeCell;
2525 ///
2526 /// let uc = UnsafeCell::new(5);
2527 ///
2528 /// let val = unsafe { uc.as_ref_unchecked() };
2529 /// assert_eq!(val, &5);
2530 /// ```
2531 #[inline]
2532 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2533 #[rustc_should_not_be_called_on_const_items]
2534 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2535 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2536 unsafe { self.get().as_ref_unchecked() }
2537 }
2538
2539 /// Get an exclusive reference to the value within the `UnsafeCell`.
2540 ///
2541 /// # Safety
2542 ///
2543 /// - It is Undefined Behavior to call this while any other
2544 /// reference(s) to the wrapped value are alive.
2545 /// - Mutating the wrapped value through other means while the
2546 /// returned reference is alive is Undefined Behavior.
2547 ///
2548 /// # Examples
2549 ///
2550 /// ```
2551 /// #![feature(unsafe_cell_access)]
2552 /// use std::cell::UnsafeCell;
2553 ///
2554 /// let uc = UnsafeCell::new(5);
2555 ///
2556 /// unsafe { *uc.as_mut_unchecked() += 1; }
2557 /// assert_eq!(uc.into_inner(), 6);
2558 /// ```
2559 #[inline]
2560 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2561 #[allow(clippy::mut_from_ref)]
2562 #[rustc_should_not_be_called_on_const_items]
2563 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2564 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2565 unsafe { self.get().as_mut_unchecked() }
2566 }
2567}
2568
2569#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2570#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2571impl<T: [const] Default> const Default for UnsafeCell<T> {
2572 /// Creates an `UnsafeCell`, with the `Default` value for T.
2573 fn default() -> UnsafeCell<T> {
2574 UnsafeCell::new(Default::default())
2575 }
2576}
2577
2578#[stable(feature = "cell_from", since = "1.12.0")]
2579#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2580impl<T> const From<T> for UnsafeCell<T> {
2581 /// Creates a new `UnsafeCell<T>` containing the given value.
2582 fn from(t: T) -> UnsafeCell<T> {
2583 UnsafeCell::new(t)
2584 }
2585}
2586
2587#[unstable(feature = "coerce_unsized", issue = "18598")]
2588impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2589
2590// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2591// and become dyn-compatible method receivers.
2592// Note that currently `UnsafeCell` itself cannot be a method receiver
2593// because it does not implement Deref.
2594// In other words:
2595// `self: UnsafeCell<&Self>` won't work
2596// `self: UnsafeCellWrapper<Self>` becomes possible
2597#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2598impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2599
2600/// [`UnsafeCell`], but [`Sync`].
2601///
2602/// This is just an `UnsafeCell`, except it implements `Sync`
2603/// if `T` implements `Sync`.
2604///
2605/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2606/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2607/// shared between threads, if that's intentional.
2608/// Providing proper synchronization is still the task of the user,
2609/// making this type just as unsafe to use.
2610///
2611/// See [`UnsafeCell`] for details.
2612#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2613#[repr(transparent)]
2614#[rustc_diagnostic_item = "SyncUnsafeCell"]
2615#[rustc_pub_transparent]
2616pub struct SyncUnsafeCell<T: ?Sized> {
2617 value: UnsafeCell<T>,
2618}
2619
2620#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2621unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2622
2623#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2624impl<T> SyncUnsafeCell<T> {
2625 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2626 #[inline]
2627 pub const fn new(value: T) -> Self {
2628 Self { value: UnsafeCell { value } }
2629 }
2630
2631 /// Unwraps the value, consuming the cell.
2632 #[inline]
2633 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2634 pub const fn into_inner(self) -> T {
2635 self.value.into_inner()
2636 }
2637}
2638
2639#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2640impl<T: ?Sized> SyncUnsafeCell<T> {
2641 /// Gets a mutable pointer to the wrapped value.
2642 ///
2643 /// This can be cast to a pointer of any kind.
2644 /// Ensure that the access is unique (no active references, mutable or not)
2645 /// when casting to `&mut T`, and ensure that there are no mutations
2646 /// or mutable aliases going on when casting to `&T`
2647 #[inline]
2648 #[rustc_as_ptr]
2649 #[rustc_never_returns_null_ptr]
2650 #[rustc_should_not_be_called_on_const_items]
2651 pub const fn get(&self) -> *mut T {
2652 self.value.get()
2653 }
2654
2655 /// Returns a mutable reference to the underlying data.
2656 ///
2657 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2658 /// guarantees that we possess the only reference.
2659 #[inline]
2660 pub const fn get_mut(&mut self) -> &mut T {
2661 self.value.get_mut()
2662 }
2663
2664 /// Gets a mutable pointer to the wrapped value.
2665 ///
2666 /// See [`UnsafeCell::get`] for details.
2667 #[inline]
2668 pub const fn raw_get(this: *const Self) -> *mut T {
2669 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2670 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2671 // See UnsafeCell::raw_get.
2672 this as *const T as *mut T
2673 }
2674}
2675
2676#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2677#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2678impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2679 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2680 fn default() -> SyncUnsafeCell<T> {
2681 SyncUnsafeCell::new(Default::default())
2682 }
2683}
2684
2685#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2686#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2687impl<T> const From<T> for SyncUnsafeCell<T> {
2688 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2689 fn from(t: T) -> SyncUnsafeCell<T> {
2690 SyncUnsafeCell::new(t)
2691 }
2692}
2693
2694#[unstable(feature = "coerce_unsized", issue = "18598")]
2695//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2696impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2697
2698// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2699// and become dyn-compatible method receivers.
2700// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2701// because it does not implement Deref.
2702// In other words:
2703// `self: SyncUnsafeCell<&Self>` won't work
2704// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2705#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2706//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2707impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2708
2709#[allow(unused)]
2710fn assert_coerce_unsized(
2711 a: UnsafeCell<&i32>,
2712 b: SyncUnsafeCell<&i32>,
2713 c: Cell<&i32>,
2714 d: RefCell<&i32>,
2715) {
2716 let _: UnsafeCell<&dyn Send> = a;
2717 let _: SyncUnsafeCell<&dyn Send> = b;
2718 let _: Cell<&dyn Send> = c;
2719 let _: RefCell<&dyn Send> = d;
2720}
2721
2722#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2723unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2724
2725#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2726unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2727
2728#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2729unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2730
2731#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2732unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2733
2734#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2735unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2736
2737#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2738unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}